
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

The Friendship Paradox: An Analysis on Signed Social Networks
with Positive and Negative Links

Catherine Yang
catherine.y.yang@vanderbilt.edu

Vanderbilt University

Yuying Zhao
yuying.zhao@vanderbilt.edu

Vanderbilt University

Tyler Derr
tyler.derr@vanderbilt.edu
Vanderbilt University

ABSTRACT
Given the ubiquity and significance of social network systems,
comprehending the network topology is essential for a deeper un-
derstanding of these networks. One notable phenomenon in social
networks, Friendship Paradox (FP), has been extensively studied
and has led to the Generalized Friendship Paradox (GFP), which
states that an individual’s neighbors, on average, have more of
some measurable characteristic or quantity than the individual (e.g.,
friends/degree in the original FP). However, most of the existing
works on FP and GFP naturally focus on positive relationships while
in the real world, negative relations are also ubiquitous. To bridge
this crucial gap, we investigate (G)FP in signed networks which
contain both positive and negative relationships (e.g., friends and
foes). Specifically, we propose a first-order signed neighbor metric
based on the traditional (G)FP that not only considers undirected
homogeneous link relations (e.g., comparing an individual’s foes
to the foes of their foes), but also directed heterogeneous link rela-
tion (e.g., comparing an individual’s friends to the friends of their
foes). Furthermore, we develop a second-order metric to further
study the relationship between an individuals positive and negative
neighborhood sets (e.g., comparing the average number of friends
from an individuals set of foes to that of their friends). Finally we
perform an empirical analysis of these proposed metrics in signed
networks across a representative set of real-world datasets.

CCS CONCEPTS
• Information systems→ Data mining.
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1 INTRODUCTION
Social network systems have become ubiquitous in our daily lives,
providing us with platforms to connect with others and exchange
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information. Given their significance, this has led to a plethora of
studies to better understand our society at both the macro-level
(e.g., social stability [12, 13]) and at the micro-level (e.g., individual
or subgroup interactions [22]) [2, 28]. At the core of much of this
research is the network topology [23], which defines the relation-
ships between the individuals involved in the system. This has led
to inherently multi-disciplinary research at the intersection of soci-
ology, graph theory, data science, etc. [8]. One such direction is the
well studied Friendship Paradox (FP) [11], which states, on average,
an individual’s friends have more friends than that individual.

This phenomenon of the friendship paradox has been shown
to exist due to a combination of factors in a network, specifically
the sampling bias where nodes are counted proportional to their
node degree [11] (i.e., the overrepresentation of popular individuals
appearing in the averaging among the neighborhood set of many
others [17]). While the phenomenon is only truly linked with the
degrees of a node, it has led to the proposed Generalized Friend-
ship Paradox (GFP) [9], that generalizes and extends beyond node
degree/popularity. More precisely, GFP states that an individual’s
neighbors, on average, tend to have more than the individual, which
has been discovered to exist across many other individual character-
istics and rooted in the fact that they have positive correlation with
degree/popularity [9, 17]. For example, GFP has been shown to exist
empirically for individual characteristics including viral content on
social media [17], citations in collaboration networks [9], etc., while
also theoretically in the direction of popularity stepping beyond de-
gree to more complex measures, such as eigenvector centrality [16].
However, nearly all existing work has focused on networks where
the links are defined according to positive relationships. Hence, in
this work we seek to study the friendship paradox in signed net-
works [3], which models complex social systems containing both
positive relations (e.g., friends or followers) and negative relations
(e.g., foes or unfollowers) together in one network [4, 22, 25].

In today’s world while perhapsmost of our social interactions are
positive, users in both physical and virtual social systems ultimately
also develop negative relations [22]. Hence, to fully understand and
uncover the complexities of our society, signed networks are be-
coming more prevalent [5, 15, 25]. However, to the best of our
knowledge, work has yet to focus on the friendship paradox in
signed networks with an empirical emphasis on negative links and
the generalized friendship paradox from the perspective of the in-
teractions between positive and negative links/degrees. Dedicated
efforts are especially desired on the study of negative links, since
while they follow some commonalities with positive links, such as
power-law degree distributions [7, 24], they also have significant
differences across other properties, such as homophily [26] or reci-
procity, which has been shown to be related to the level of visibility
of negative links within the system [7]. Furthermore, the behavior
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that constitutes a negative link is also highly variable depending
on the network, which emphasizes the need for a comprehensive
study across a representative set of signed networks.

In this work, we first provide a review of related work from the
perspective of the friendship paradox and signed network analysis.
Thereafter, we propose a first-order signed neighbor paradox based
on the traditional friendship paradox, but instead of independently
studying negative links and treating them fully independent from
positive links, we further calculate the interactions among posi-
tive and negative links for both signed and unsigned networks.
Expanding on the first-order definition, we then propose a deeper
second-order definition, inspired by recent second-order unsigned
network statistics studying multistep friendship paradox [19] and
second-order homophily [10]. Empirical analysis of the proposed
definitions are studied across a representative set of online signed
networks covering a bitcoin exchange network [7], product review
website [14], technology news website [14], and voting/election
network [22], along with a physical signed network collected from
a village in Honduras [18]. Our contributions can be summarized
as follows:
• We for the first time study the (generalized) friendship paradox

in signed networks containing both positive and negative links.
• We propose both first-order and second-order signed neighbor

metrics to study the complex phenomenon related to positive
and negative node degrees in signed networks.

• We provide a comprehensive analysis of the developed metrics
across a representative set of signed networks, which stimu-
lates further research in this direction to deeper understand the
preliminary findings of this work.

2 PRELIMINARIES
In this section, we first discuss related work on the Friendship Para-
dox and signed network analytics, then we provide basic notations
used throughout the paper.

2.1 Related Work
2.1.1 Related Studies on the Friendship Paradox. The Friendship
Paradox (FP) was first discovered by Scott L. Feld in 1991 as a form
of sampling bias[11]. It implies that an individual is more likely
to be friends with someone who is popular, and less likely to be
friends with someone who has fewer friends. In network terms, a
node is more likely to be a neighbor of a node with many neigh-
bors (i.e., high degree), compared to being linked to a node with
only a few edges (i.e., low degree). However, researchers later stud-
ied/observed this phenomenon not only according to the theoreti-
cally grounded node degree, but in a more generalized form where
individuals’ neighbors, on average, have more of some other mea-
surable individual characteristic/quantity than the individual. This
generalized form has been designated as the Generalized Friend-
ship Paradox (GFP)[9]. For instance, GFP occurs in collaboration
networks where a researcher’s collaborators, on average, tend to
be more productive[9]. GFP has also been discovered to be associ-
ated with user activity engagements on online social media [17].
Nevertheless, these discourses on FP/GFP primarily concentrate on
positive relationships [11, 17, 27, 29], while the seemingly unavoid-
able and prevalent negative relationships have yet to be explored.

2.1.2 Signed Network Analytics. Although negative relations in
social networks have been relatively underexplored, signed net-
works seek to model these complex systems inherently having both
positive and negative links [3, 25]. For example, positive links may
represent relations associated with trust/friendships, while negative
links might encode distrust or even animosity. Generally, the major
directions in signed network analytics are: 1) network theories and
analysis [3]; 2) prediction tasks on networks [6, 21]; 3) network
models [4, 24]; and 4) network measurements [1, 7]. In this work,
we seek to expand the frontier on signed network measurements
and theories, by investigating the (G)FP in signed networks by
developing first-order and second-order network measurements.

2.2 Signed Network Notations
Formally, a signed network G = (V, E+, E−) is composed of a
set of 𝑛 nodes (e.g., users in a social network) V = {𝑣1, . . . , 𝑣𝑛},
along with the sets of positive links E+ and negative links E− that
exist between the nodes in the network. Furthermore, we define
the set of immediate positive neighbors of a node 𝑣𝑖 as N+ (𝑣𝑖 ) and
similarly as N− (𝑣𝑖 ) for the set of negative neighbors.

3 SIGNED NEIGHBOR PARADOX METRICS
In this section, we first propose a first-order measurement towards
not only understanding the FP applied to negative links (instead
of positive links), but furthermore to measure the complex rela-
tionships between positive and negative links, which also aligns
with the GFP assuming positive/negative degrees are correlated.
Thereafter, we introduce a second-order signed neighbor metric
that directly studies the potentially paradoxical relationship among
an individuals set of friends compared to their set of foes, from the
perspective of the average number of friends/foes associated with
the individuals in those two neighborhood sets.

3.1 First-order Measurements
In order to study the first-order signed neighbor paradox, we pro-
pose calculating each node’s four possible relations: incoming posi-
tive edges, outgoing positive edges, incoming negative edges, and
outgoing edges. Then, we take a set of the node’s neighbors and
calculate the average number of incoming positive edges, outgoing
positive edges, incoming negative edges, and outgoing edges those
neighbors have. The set of neighbors is chosen based on its relation-
ship to the node. We analyze the number of each type of neighbor
for a node and its set of each neighbor type. More formally, for each
node 𝑣𝑖 , we calculate:

𝜓
𝛼𝛽

𝑖,1 =
1

N𝛼 (𝑣𝑖 )
∑︁

𝑣𝑗 ∈N𝛼 (𝑣𝑖 )
1
(
|N𝛽 (𝑣𝑗 ) | > |N𝛽 (𝑣𝑖 ) |

)
where 1 is an indicator function such that it equals 1 when the
neighbor 𝑣 𝑗 has more neighbors of 𝛽 type than it, and 0 otherwise.
This expression is summed and then divided by the number of
neighbors we compared it against so that𝜓𝛼𝛽

𝑖,1 represents the ratio
of a node 𝑣𝑖 ’s 𝛼 type neighbors that have more relations of 𝛽 type
than it. For example, in a simplified undirected case, when 𝛼 =
+ and 𝛽 = -, this measures to what extent a node’s friends have
more foes than it. Then, we aggregate the results of each node, and
calculate the ratio of nodes whose friends have more foes than them.
A visualization of the undirected first-order is shown in Figure 1.
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3.2 Second-order Measurements
Expanding upon the above first-order measurement, we seek to
develop a deeper second-order signed theory, which are even less
explored in the literature with only recently a few works focused in
unsigned networks [10, 19]. Specifically, we propose to investigate
a more advanced potential signed neighbor degree paradox consid-
ering second-order information, while also developing a computa-
tionally efficient global aggregated measure to avoid the inherent
nested all-pairs comparison. Formally, for a node 𝑣𝑖 the second-
order signed neighbor paradox can be calculated as follows:

𝜓𝛿
𝑖,2 =

1
|N+ (𝑣𝑖 ) | |N− (𝑣𝑖 ) |

∑︁
𝑣𝑗 ∈N+ (𝑣𝑖 )

∑︁
𝑣𝑘 ∈N− (𝑣𝑖 )

1
(
|N𝛿 (𝑣𝑗 ) | > |N𝛿 (𝑣𝑘 ) |

)
where 𝛿 ∈ {+,−} for undirected signed networks. However, this
results in a 𝑂 (𝑛3) time complexity for a naïve global aggregation.
Therefore, to avoid the computational costs, we instead propose:

𝜓𝛿
2 =

1
𝑁

𝑁∑︁
𝑖=1

1

(( 1
|N+ (𝑣𝑖 ) |

∑︁
𝑣𝑗 ∈N+ (𝑣𝑖 )

|N𝛿 (𝑣𝑗 ) |
)
>

( 1
|N− (𝑣𝑖 ) |

∑︁
𝑣𝑘 ∈N− (𝑣𝑖 )

|N𝛿 (𝑣𝑘 ) |
))
.

Here we are interested in comparing the amount of friends and foes
between an individuals set of friends and foes. Friends refer to the
set of nodes a node has a positive outgoing edge to, and enemies
refer to the set of nodes a node has a negative outgoing edge to.

For example, in the positive case where 𝛿 = +, for each node 𝑣𝑖 ,
we take its set of friends N+ (𝑣𝑖 ) and foes N− (𝑣𝑖 ), and measure the
average amount of friends in each set. We sum this over all nodes,
and the resulting value represents the ratio of nodes in the network
in which its set of friends have more friends in the network than
its enemies have friends. The negative case is similarly defined.

3.3 Temporal First-order Measurements
The temporal first-order measurements aim to capture how the
measurements for the first-order paradox trend change over time.
We are interested in seeing if there is a particular value that it
may converge to that represents the average ratio of friends more
popular than us compared to friends with less friends. Therefore,
this paper will focus on measuring the number of positive outgoing
edges each node has and the average number of positive outgoing
edges a node’s outgoing positive edged neighbors have in relation
to how long the node has existed and participated in the network
(and similarly for outgoing negative).

In order to measure the temporal behavior of the data, we first
convert the temporal graph into a sequence of static graphs so
that we can measure the first-order values on each graph in the
sequence. More specifically, in every snapshot, we add all new
nodes and edges to the graph. The graph is incrementally built up,
and its state at each snapshot represents the network at that point
in time. Each snapshot constitutes all transactions occurring over
up to that point in time since the start of data collection. However,
since nodes enter the graph at different points, the amount of time
each node has existed also differs. Since we want to measure the
first-order paradox in relation to how long a node has existed, we
calculate the first-order value, and place it in the proper time bin
according to the difference in the current time and the time of the
node’s creation. Ultimately, first-order values are averaged per bin.

Figure 1: An example visualizing how the undirected first-
order and second-order measurements are calculated.

4 EMPIRICAL ANALYSIS
To comprehensively investigate the signed neighbor paradox via our
proposed first-order and second-order measurements, we evaluate a
representative set of signed networks covering a variety of negative
relationships including both online and physical signed networks
with their detailed descriptions in Section 4.1 and Table 1. We
explore both directed and undirected settings in Section 4.2 and
Section 4.3, respectively. Furthermore, in Section 4.4, we explore
the dynamic setting where we examine the node-level evolution of
directed first-order measurement. In the end, we provide the results
and conduct analysis for second-order measurement.

4.1 Signed Network Datasets
4.1.1 Bitcoin Alpha. The Bitcoin Alpha dataset [7] is a directed
weighted temporal signed network taken from the Bitcoin Alpha
platform, which is a trust network associated with users who anony-
mously transact with each other for products/services for Bitcoin.
Each user can rate their transaction partners with either a posi-
tive score (ranging from 1 to 10) or a negative score (ranging from
-10 to -1), where the platform offers guidance to standardize the
positive/negative scoring. The collective ratings a user receives
determine their reputation within the platform, and affect their
future ability to transact within the community.

4.1.2 Wiki Elections. Wiki elections [22] is a directed temporal
signed network that models Wikipedia’s community votes that
get cast during elections of new administrators. In this network,
positive edges represent users/admins vote in support of the admin
candidate while negative edges represent the voters’ opposition.

4.1.3 Honduras Village. The Honduras Village dataset [18] is a
directed signed network, which represents friendly (positive), an-
tagonistic (negative), or stranger (no-link) real-world physical rela-
tionships between individuals living in western Honduras.

4.1.4 Slashdot. The Slashdot dataset [20] is a directed signed net-
work modeling a technology news site, where specifically the Slash-
dot Zoo feature allows users to tag each other as their friends or
foes (i.e., positive or negative neighbors). Here we condense this
directed signed network into an undirected network, where for a
bi-directional relationship if at least one is negative we treat this as
a negative undirected edge.
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Table 1: Basic statistics of the signed networks datasets.

Network
Type Dataset Name # Nodes # Pos.

Edges
# Neg.
Edges

Directed
Bitcoin Alpha 3,784 22,650 1,536
Wiki Elections 7,116 78,440 22,253

Honduras Village 149 1,252 187

Undirected
Slashdot 82,141 380,933 119,548
Epinions 131,580 589,888 121,322

4.1.5 Epinions. The Epinions dataset [14] is a directed signed net-
work created from Epinions.com, a product review platform that
allows users to assign trust (i.e., positive) or distrust (i.e, negative)
links to other users based on their provided reviews. We note that
negative links are totally invisible to others, but are provided by
Epinions staff for research purposes. Here we condense this dataset
to an undirected signed network following the same procedure as
on the Slashdot dataset.

4.2 Directed First-order Analysis Results
One observation is that the 4 values for 𝛼 ∈ {+𝑖𝑛, +𝑜𝑢𝑡}, 𝛽 ∈
{+𝑖𝑛, +𝑜𝑢𝑡} are relatively higher than the other sets of four in Table
2. This indicates that the set of users that view a node positively
and the set of users the node views positively are likely to have
on average even more incoming and outgoing positive reviews. In
social networks, this can represent a node’s involvement with a
popular person who is generally well liked and positive towards
others. In online trading networks such as Bitcoin Alpha where a
positive review represent trust, the results indicate that users that
a user reviews positively is likely to be a trustworthy user who
gives and receives more positive reviews than the user. These users
are potentially highly active and well known traders that act as
hubs that increases the overall average number of positive edges
observed in a node’s positive neighbor set.

From Table 2, 𝛼 = −𝑖𝑛 and 𝛽 = −𝑜𝑢𝑡 is the highest value in its
respective row and column for all three datasets, meaning that the
users that view a node negatively, are on average, likely to leave
more negative reviews than the node does. This is explainable by
the fact that we are taking a set of users who have given the node a
negative review or vote, and may be more prone to giving negative
reviews/votes to others beyond that node.

Another point of interest is that the 𝛼 = −𝑜𝑢𝑡 and 𝛽 = −𝑜𝑢𝑡
value is consistently amongst the lowest values measured, and the
only value that remains below 0.5 in all three datasets. In all the
social networks studied, more than half of users havemore outgoing
negative edges than the set of users it has a negative edge to. This
contrasts with the traditional friendship paradox, and our findings
in 𝛼 = +𝑜𝑢𝑡 and 𝛽 = +𝑜𝑢𝑡 , where a node’s positive neighbors have
more positive neighbors than it for most nodes. The low value
observed for 𝛼 = −𝑜𝑢𝑡 and 𝛽 = −𝑜𝑢𝑡 indicates that most users in
these networks give a greater amount of negative edges than the
nodes it has a negative edge to do.

4.3 Undirected First-order Analysis Results
Table 3 describes the undirected first-order results on the Slashdot
and Epinions datasets. It can be observed that the diagonal values
where 𝛼 = 𝛽 are higher than the 𝛼 ≠ 𝛽 values. In other words, for a

Table 2: First-Order Results on Directed Signed Networks

Bitcoin Alpha

𝛼
𝛽 + in + out – in – out

+ in 0.95 0.95 0.74 0.59
+ out 0.96 0.95 0.75 0.59
– in 0.48 0.45 0.39 0.88
– out 0.85 0.84 0.91 0.38

Wiki Elections

𝛼
𝛽 + in + out – in – out

+ in 0.84 0.97 0.76 0.85
+ out 0.78 0.64 0.71 0.58
– in 0.72 0.86 0.74 0.95
– out 0.57 0.45 0.79 0.47

Honduras Village

𝛼
𝛽 + in + out – in – out

+ in 0.54 0.67 0.51 0.61
+ out 0.79 0.65 0.59 0.64
– in 0.49 0.57 0.39 0.85
– out 0.54 0.49 0.72 0.31

Figure 2: A detailed node-level (log-log) visualization on the
Bitcoin Alpha dataset of the (G)FP according to a directed
unsigned perspective where positive and negative links are
merged together towards a single (in/out) degree. Note that
the purple nodes are users who adhere to the theory’s expec-
tation, while olive nodes below the diagonal line are those
that have a higher (in/out) degree than the average of their
(in/out) neighbors.

Table 3: Slashdot (Epinions) Undirected First-Order Results

𝛼
𝛽 + –

+ 0.97 (0.88) 0.83 (0.71)
– 0.87 (0.81) 0.96 (0.86)

greater portion of nodes, it has less friends than its friends, and less
enemies than its enemies. However, all values are relatively high,
showing that most nodes have both less friends and less enemies
than its friends and enemies do.

4
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Figure 3: A detailed node-level (log-log) visualization on the
Bitcoin Alpha dataset of the (G)FP according to a directed
signed perspective where positive and negative links are ana-
lyzed separately and specifically focused on Bitcoin Alpha’s
diagonal of Table 2. Note the blue(red) nodes are users who
adhere to the theory’s expectation according to their posi-
tive(negative) perspective, while the orange nodes do not.

Figure 4: Visualizing the same setting as Figure 3, but on the
Wiki Elections dataset.

4.4 Examining the Node-level Evolution of
Directed First-order Measurements

In order to measure the temporal behavior of the data, we first
decide the regularity at which we create static graphs to measure
the first-order values. In this paper, we elected Bitcoin Alpha as
a representative dataset and set the snapshots to be every month,
or 30 days, giving us 72 first-order measurements over the period
the data was collected. We note however that although the data
contains 72 months, an insufficient number of nodes exist and
have positive relations for over than 64 months, and an insufficient
number of nodes have negative relations for over 47 months, so we
omit those insignificant data points in Figures 6 and 7, respectively.

Figure 5: Visualizing the same setting as Figure 3, but on the
Honduras Village dataset.

Figure 6: Bitcoin Alpha Positive Directed First Order Paradox
over 64 Months describing the relationship between the age
of nodes and the average positive friendship paradox value
observed at that age.

The first observation, from Figure 6, is that as time goes by, the
proportion of nodes with less positive outgoing edges than their
successors is steadily increasing. It indicates that more users are
experiencing the positive friendship paradox over time.

Similar to the non-temporal first-order results, the range of val-
ues are high at above 0.95. 96% of nodes observe that its positive
edged neighbors have more positive outgoing edges than it does
when it first joins the network. As nodes age, more and more of
them observe that on average, its friends have more friends. As
the Bitcoin Alpha dataset describes online ratings and transactions
between users, it is logical that over time, a user would transact
with more popular, active, and trusted users that interact with and
review other legitimate users which may increase the overall friend
average as well as the % of nodes that fall in this category.

Contrary to the positive results, the % of nodes with less negative
outgoing edges than the nodes it has a negative outgoing edge seems
to oscillate around a much lower range around 0.3-0.4, indicating
that a majority of users leave a greater amount of negative reviews
than their enemies do. In the context of bitcoin, someone that a
user leaves a negative review for may be an illegitimate trader, and
may leave more positive reviews in an effort to appear trustworthy.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 7: Bitcoin Alpha Negative Directed First-Order Para-
dox over 47 Months describing the relationship between the
age of nodes and the average negative friendship paradox
value observed at that age.

Table 4: Second-Order Results

Dataset 𝛿 = + 𝛿 = −
Bitcoin Alpha 0.8852 0.8948

Slashdot 0.8012 0.6461
Epinions 0.8383 0.7557

Wiki Elections 0.7376 0.6039
Honduras Village 0.7718 0.7383

4.5 Second-order Analysis Results
The second-order results are shown in Table 4. We draw three
observations as follows: (1) Positive Trend: the second-order positive
results are similarly high for all datasets with an average of 0.8068,
indicating that for most nodes, their friends have more friends
than their enemies do; (2) Negative Trend: the negative results have
a lower average at 0.7278 with a slightly higher variation. This
indicates a similar observation with the positive results: for most
nodes, their friends also have more enemies than their enemies do;
(3) Positive vs Negative: when comparing the positive and negative
scores, we observe that the negative result is consistently equal to
or lower than the positive. It indicates that the negative trend is
slightly weaker than the positive trend.

5 CONCLUSION
In this study, we bridge the gap between the Friendship Paradox
(FP)/Generalized Friendship Paradox (GFP) and signed networks
by introducing corresponding metrics that take into account not
only positive but also negative relationships. We propose both first-
order and second-order signed neighbor paradox metrics based
on the traditional FP metric to investigate at multiple levels along
with providing aggregated statistics, node-level visualizations, and
examine the node-level evolution of the first-order measurement.
We plan to continue this study on more signed network datasets,
with emphasis on diverse negative linkmeanings (e.g., unfollowing),
along with a deeper investigation on the temporal signed networks.

Additionally, since the current study focuses on the sign of links,
we may consider edge weights as a method of accounting for the
strength/polarization between nodes when measuring FP and GFP.
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