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ABSTRACT
Facial expression recognition plays a prominent role in numerous
applications, from emotion detection to human-computer interac-
tion. However, these models are often subject to different biases.
This study explores potential racial biases in facial expression anal-
ysis using synthetically generated faces. We specifically investigate
disparities in the performance of an action unit estimation network
across different skin tones. This research highlights the presence of
skin color biases in an action unit estimation network and demon-
strates the impact and importance of dataset diversity and variety
in achieving robust models. Furthermore, we show that these biases
vary across different action units and skin tones and these model
biases interact with the biases caused by dataset differences. This
work is an important step towards the eventual goal of understand-
ing the basis of these combined biases and removing them from
facial expression models.
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1 INTRODUCTION
Facial expression recognition (FER), an integral component of af-
fective computing, is increasingly shaping a myriad of applications
across diverse domains today. Such models discern facial expres-
sions to interpret emotions, which has been useful in developing
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intelligent systems capable of automated analysis of human emo-
tion and experience. For example, FER models are harnessed in
healthcare to assist in the monitoring of patient care and diagnosis
of medical or behavioral conditions [5]. In advertising and con-
sumerism, FER models enable real-time customer sentiment analy-
sis, providing valuable insights into product and service reception
[3]. In education, models help facilitate personalized learning by
identifying student engagement, boredom, or confusion [4]. Further,
user engagement and interaction in sectors such as entertainment,
gaming, and interpersonal gaming are being transformed through
immersive, responsive, and emotionally intelligent experiences [7].

Given the widespread employment of automated FER, it is criti-
cal that models perform consistently and equitably across diverse
populations. This consistency demands fairness in recognizing ex-
pressions in faces across different, genders, ages, ethnicities, and
skin colors. However, existing public FER models demonstrate bi-
ases in the faces of diverse populations. Raina et al. [11] revealed
racial biases in several publicly available models using synthetically
generated faces. They revealed that these models for both emo-
tion and action unit detection were biased across skin color and
facial morphology. Fabi et al. [2] used artificially generated faces
to explore racial biases in pain-related facial expressions using a
pain-estimation model [12]. They revealed that the network’s acti-
vation of facial AUs was subject to different biases in performance
for different skin colors and races and that these biases were not
solely better for the faces of the majority race and skin color.

In this work, we analyze the biases and performance of a facial
action unit activation network from a computer vision pain estima-
tion model [12]. Our method involves the generation of an artificial
facial expression dataset, which enables precise control over fa-
cial parameters to isolate the impact of distinct manipulations on
our model under evaluation and better understand the nuanced
dependencies and biases within FER models.

This study serves two primary functions. Firstly, it conducts a
targeted investigation of skin color biases in an AU Estimation
network using synthetic faces, revealing the presence of skin color
biases and highlighting the complexity and non-linearity of such
biases. Secondly, it studies the impact of skin color distribution in
the training set, highlighting the importance of dataset diversity
and distribution.

These insights are valuable in the pursuit of developing more
fair, accurate, and empathetic AI systems in the future.
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2 METHODS
In this section, we describe the facial expression dataset we con-
tribute and use for model training and evaluation. We also describe
the model under evaluation.

2.1 Synthetic Facial Action Unit Dataset
Our work makes use of artificially generated images of faces using
the Character Creator 4 (CC4) software, a platform for customizing
and generating realistic character assets. We create a dataset of
940 facial expression images of a European male and female face
varying in skin color and action unit activations.

The facial expressions of our synthetic faces were crafted by
manipulating activation levels for various facial activation units
(AUs), based on the Facial Action Coding Systems (FACS) [1]. FACS
is a system that categorizes AUs on an anatomical basis, linked to
specific facial muscle movements that result in perceptible changes
in facial expressions.

We systematically adjusted the facial expressions using ten spe-
cific AUs, controlled by facial morphing options in CC4. These
action units and their corresponding options in CC4 are described
in Table 1. These AU mappings are simulated based on [1].

Table 1: Action Units and Intensity Levels

Action
Unit

Description CC4 Facial Morphing Options

AU4 Brow Lowerer Brow Drop L/R (30, 60, 90, 120, 150)
AU6 Cheek Raiser Cheek Raise L/R (30, 60, 90, 120, 150)
AU7 Lid Tightener Eye Squint L/R (30, 60, 90, 120, 150)
AU9 Nose Wrinkler Nose Sneer L/R (30, 60, 90, 120, 150)
AU10 Upper Lip Raiser Nose Nostril Raise L/R (30, 60, 90,

120, 150), Nose Crease L/R (20, 40,
60, 80, 100), Mouth Shrug Upper (30,
60, 90, 120, 150)

AU12 Lip Corner Puller Mouth Smile L/R (30, 60, 90, 120,
150)

AU20 Lip Stretcher Mouth Stretch L/R (30, 60, 90, 120,
150)

AU25 Lips Part Mouth Shrug Upper (16, 32, 48, 64,
80), Mouth Drop Lower (16, 32, 48,
64, 80)

AU26 Jaw Drop Jaw Open (10, 20, 30, 40, 50)
AU43 Eyes Closed Eye Blink L/R (100)

For each face, only one action unit is activated, with the others
remaining unactivated. The process of generating facial expressions
is repeated for 10 different skin colors and for 2 genders, male and
female. The 10 skin tones are derived from the Monk Skin Tone
Scale [8], a skin tone scale that aims to be more representative
and inclusive of a broader spectrum of skin tones toward better
representation in datasets and ML models. The total number of
samples is 940 = (9 AUs * 5 intensities + 1 AU43 + 1 face no activated
AUs) * 10 skin tones * 2 genders).

Figure 1: Top: Sample Face Created by CC4 from the Syn-
thetic FAU Dataset: European Male, Skin Tone 4, AU10 Max
Activated. Below: 10 Monk Skin Tone Scale (10 darkest, 1
lightest, scale taken from [8])

2.2 Extended MTL Model for Pain-Estimation
The model we use to conduct our experiments and investigations
follows the research done by [2] and [11], investigating the perfor-
mances and biases of the initial phase of the Extended Multi-Task
Learning (MTL) pain estimation neural network of Xu et al. [12].

This model achieves state-of-the-art accuracy on the UNBC-
McMaster Shoulder Pain Expression dataset [6]. This dataset is
publicly accessible and comprises 200 face videos from 25 patients
experiencing varying levels of shoulder pain during different move-
ments. Each frame of these videos was annotated with 11 facial AU
intensities, a corresponding PSPI score, and 66 AAM landmarks.
The Prkachin and Solomon Pain Intensity score [10], also known
as PSPI, is a pain metric derived from a unique combination of
pain-related AU intensities. This metric is defined as:

𝑃𝑆𝑃𝐼 = 𝐴𝑈 4 +𝑚𝑎𝑥 (𝐴𝑈 6, 𝐴𝑈 7) +𝑚𝑎𝑥 (𝐴𝑈 9, 𝐴𝑈 10) +𝐴𝑈 43

The first stage of this tri-phased model is built on top of the VG-
GFace network [9], pre-trained on classifying 2622 faces of largely
Caucasian celebrities. This network was further trained on the
UNBC-McMaster Shoulder Pain Dataset, tuning the network to
detect and score 10 pain-related AUs (4, 6, 7, 9, 10, 12, 20, 25, 26, 43)
and determine the PSPI score of a facial image frame. The extended
MTL model includes two additional stages that predict whole-video
segment pain scores based on the output from the first stage. How-
ever, our experiments solely utilize the first stage of this model,
which we’ll refer to as the “AU Estimator” model henceforth. This
model is publicly available.
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3 EXPERIMENTS
In this section, we describe our experiments aimed at uncovering
skin color biases in the AU Estimation network and understand-
ing how representation in training datasets impacts the network’s
behavior.

3.1 Exploring Color Bias with Paired T-Tests
To investigate potential biases in our AU Estimator model, we de-
signed an experiment that deliberately focuses on differences across
skin tones. Our synthetic faces maintain identical attributes in all as-
pects such as facial expression, morphology, and pose, varying only
in skin color. Therefore, if our model is free from bias, it should
assign equivalent AU activation and, consequently, PSPI scores
across different skin tones.

To conduct our experiment, we first trained our AU Estimator
on a subset of our synthetic faces, excluding the faces with skin
tone 1 and skin tone 10. We then run the faces with skin tones 1
and 10 through the tuned AU Estimator model and employ paired
two-sided t-tests on the model’s outputs for each AU and PSPI.
The input images for training and testing are reshaped to 256×256,
center-cropped to 224×224, and their color channels are adjusted
to match the VGGFace network. Given the controlled nature of
our synthetic faces (identical in all aspects except skin color), any
statistically significant difference in the output of the model can
be ascribed to a potential skin color bias. The results of our paired
t-tests can be seen in Table 2.

Table 2: Paired T-Tests of Skin Tone 1 vs Skin Tone 10 AU
Activation and PSPI Estimation

Column p-value t-statistic
PSPI 5.1595e-19 -14.713
AU4 4.72062e-07 -5.85827
AU6 1.11425e-06 -5.60835
AU7 1.03877e-16 -12.7535
AU9 0.00455051 -2.98338
AU10 0.00135073 -3.41276
AU12 0.112856 -1.61635
AU20 0.346493 -0.951162
AU25 0.341532 -0.96109
AU26 1.71813e-09 7.48454
AU43 5.19768e-15 11.4107

Our results reveal a statistically significant difference between
the faces of skin tones 1 and 10, indicative of a skin color bias.
Specifically, the p-values associatedwith PSPI, AU4, AU6, AU7, AU9,
AU10, AU26, and AU43 are all below the significance threshold of
0.05. This suggests that there are statistically significant differences
in the model’s estimation of these measures between the two skin
tones. In particular, the substantially low p-values associated with
PSPI, AU4, AU6, AU7, AU26, and AU43 demonstrate a strong level
of statistical significance, further highlighting the potential bias in
the model’s outputs for these measures.

The t-statistics provide additional context. For instance, the t-
statistics for PSPI (-14.713), AU7 (-12.7535), and AU43 (11.4107) are
particularly high, indicating that the differences in the model’s

outputs for these measures are not only statistically significant but
also practically significant, implying consistent disparities between
skin tones in this testing environment.

3.2 Skin Color Biases in AU Activation
3.2.1 Profiling AU4 and AU10 Activation Biases.
To further investigate the skin color biases in the AU Estimation
model, we run a comparative study on the model’s performance
in tracking the activation of AUs across skin tones. We choose
AU4 and AU10 for their contrasting behavior in model estimation
activation, demonstrated later. For this experiment, we employ
three different models. The first model (ModelAll) is the model
further trained on all of the European Male (EM) faces from skin
tones 1 to 10.

For each skin tone in our European Women faces, we plot the
model’s predicted activation level against the true activation level
of the AU. An unbiased performance would correspond to overlap-
ping straight diagonal lines of slope 1, calculated by least squared
regression, indicating that the predicted activation exactly matches
the true activation for all skin tones. A deviation from this perfor-
mance, especially if it systematically varies by skin tone, would
indicate that the model’s AU tracking performance is influenced
by skin color, a suggestion of racial bias.

Figure 2: ModelAll AU Activation Comparison for AU4.

The results of ModelAll on AU4, brow lowerer, are presented in
Figure 2, a plot of the Predicted vs True AU4 activation across the
skin tones, and Table 3, showing the slope of the predicted AU4 ac-
tivation for each skin tone, as well as the Mean Absolute Difference
(MAD) between each tone’s predicted and true AU activation.

Firstly, we observed a relatively consistent slope across all skin
tones. This suggests that ModelAll is fairly consistent in tracking
AU4 activation across different skin tones. Specifically, the slope
values range from around 0.641 to 0.739, indicating that the model
is somewhat effective at increasing its predicted activation level
as the true activation level increases. However, the MAD between
the model’s estimations and the true AU4 activations increases as
the skin tone get lighter. We observe in Figure 2 that the model’s
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Table 3: Slope and MAD of ModelAll AU4 Activation.

Skin Tone Slope MAD from True AU Activation
1 0.641013 1.300973
2 0.642171 1.294835
3 0.645249 1.288051
4 0.651103 1.267905
5 0.663155 1.224223
6 0.698193 1.121689
7 0.720832 1.033993
8 0.739004 0.931749
9 0.733068 0.881097
10 0.707294 0.840436

prediction for AU4 activation is higher for darker skins than lighter
ones, suggesting a bias in ModelAll’s AU4 estimation.

Figure 3: ModelAll AU Activation Comparison for AU10.

Table 4: Slope and MAD of ModelAll AU10 Activation

Skin Tone Slope MAD from True AU Activation
1 0.984719 0.322923
2 0.986277 0.320114
3 0.987638 0.320306
4 0.987191 0.317218
5 0.988527 0.315205
6 0.977794 0.308262
7 0.962636 0.310052
8 0.936256 0.329571
9 0.893738 0.415716
10 0.850137 0.486333

We run the same experiment of ModelAll on AU10, upper lip
raiser, shown in 3 and Table 4.

As shown in Table 3, there is a slightly decreasing trend in the
slope of the estimated activation as the skin tone darkens from 1
to 10, indicating that the model is less sensitive to AU10 activation

as skin tone darkens. The MAD between the model’s estimations
and the true AU activations also shows variance based on skin tone.
More specifically, the MAD is noticeably greater in the estimation
for the darkest skin tones (9 and 10), indicating a decrease in model
accuracy for darker skin tones. Additionally, we notice that, at
higher levels of AU10 activation, the model’s estimation of lighter
faces is greater than estimations of darker faces. This is in contrast
with the results of AU4, where the estimation of the AU4 intensity
in darker faces was greater than in lighter ones. These contrasting
results between the AUs speak to the complex nature of biases
within the model, suggesting that the bias may not be uniformly
distributed or predictable across different AUs or skin tones.

Next, we build on these experiments to explore the effects of
training the models on select skin tone ranges. We focus on how
model performance might be affected when trained exclusively on
either lighter or darker faces, to observe how the training data’s
skin tone distribution may influence the performance and potential
biases of facial expression models.

The secondmodel (ModelLighter) is the AU Estimator only tuned
on lighter EM faces of skin tones 1 to 5. The third model (Model-
Darker) is tuned only on darker skin tones 6 to 10. To test themodels’
ability to track AU4 activation, we run the European Woman (EW)
faces with AU4 activated from 0 to 5, across the range of skin tones.

Figure 4: ModelLighter AU Activation Comparison for AU4.

3.2.2 Training Models on Select Skin Tone Ranges: Lighter Faces.
The results from ModelLighter on AU4 can be seen in Figure 4 and
Table 5 above. For lighter skin tones (1 to 5), the slope remains
relatively stable at around 0.63. This suggests that ModelLighter
is adept at tracking the increase in AU4 activation for lighter skin
tones. However, as the skin tone progresses toward the darker end
of the spectrum, the slope notably decreases. The decreasing trend
of the slope, particularly from skin tone 6 onwards, suggests a di-
minished capability of ModelLighter in effectively tracking AU4
activation for darker skin tones. By skin tone 10, the slope has
dropped to approximately 0.27, significantly below the value for
lighter skin tones. This could indicate a poorer performance of Mod-
elLighter on darker skin tones, suggesting that the models trained
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Table 5: Slope and MAD of ModelLighter AU4 Activation.

Skin Tone Slope MAD from True AU Activation
1 0.637202 1.009849
2 0.637675 1.004843
3 0.639741 0.997269
4 0.640499 0.987021
5 0.639594 0.957669
6 0.611360 0.920826
7 0.556935 0.936673
8 0.465135 1.003463
9 0.362362 1.127907
10 0.271869 1.255451

on exclusively lighter faces might lead to suboptimal performance
on potentially darker skin tones.

Figure 5: ModelLighter AU Activation Comparison for AU10.

Table 6: Slope and MAD of ModelLighter AU10 Activation.

Skin Tone Slope MAD from True AU Activation
1 0.862417 0.539269
2 0.860513 0.541064
3 0.862264 0.537313
4 0.854459 0.548893
5 0.836208 0.567076
6 0.742145 0.679075
7 0.641837 0.828398
8 0.506661 1.076060
9 0.365806 1.375715
10 0.263096 1.658199

We run the same experiment of ModelLighter on AU10, upper
lip raiser, shown in 5 and Table 6.

As with the previous experiment, there is a distinct decreasing
trend in the slope of estimated AU10 activation as the skin tone

increases, suggesting that ModelLighter’s ability to track the ac-
tivation of AU10 diminishes for darker skin tones. Regarding the
MAD, the data reveals that the error in AU10 estimation increases
substantially as the skin tone gets darker, further supporting that
ModelLighter shows diminishing performance on darker tones.

Figure 6: ModelDarker AU Activation Comparison for AU4.

Table 7: Slope and MAD of ModelDarker AU4 Activation.

Skin Tone Slope MAD from True AU Activation
1 0.467312 1.533550
2 0.470848 1.524444
3 0.475049 1.512461
4 0.483988 1.488791
5 0.500818 1.438385
6 0.546932 1.328365
7 0.573018 1.251257
8 0.604129 1.136052
9 0.607842 1.053450
10 0.588989 0.970898

3.2.3 Training Models on Select Skin Tone Ranges: Darker Faces.
We then proceeded to assess the performance of ModelDarker,

trained exclusively on faces of skin tones 6-10, for its accuracy in
tracking AU4. The results are presented in Figure 6 and Table 7.

We can observe an increasing slope trend as the skin tone be-
comes darker. This suggests an improved ability of ModelDarker to
track the activation of AU4 as the skin tone darkens. This contrasts
with the behavior of ModelLighter, which showcased a diminishing
capacity to track AU activation with darker skin tones.

We see the same trend from ModelAll of decreasing MAD in
darker faces, but we notice that the errors in estimation for both
lighter and darker faces are higher. These differences in error are
larger for lighter faces than darker faces, indicating that Model-
Darker demonstrates diminished performance in estimating AU4
activation on lighter skin tones.
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Figure 7: ModelDarker AU Activation Comparison for AU10.

Table 8: Slope and MAD of ModelDarker AU10 Activation.

Skin Tone Slope MAD from True AU Activation
1 1.038681 0.249587
2 1.036923 0.249347
3 1.036318 0.249880
4 1.027152 0.263725
5 1.012150 0.293630
6 0.978398 0.331304
7 0.963501 0.325799
8 0.943696 0.312326
9 0.904796 0.361936
10 0.875376 0.385905

Subsequently, we evaluated ModelDarker’s accuracy in tracking
AU10 across skin tones, shown in Figure 7 and Table 8. In contrast
to AU4, the slope trend for AU10 decreases as skin tone darkens,
indicating a reduced capability in tracking AU10 activation for
darker skin tones. Additionally, the MAD has an increasing trend
for darker faces. We can attribute these trends to the behavior we
noticed before, where the model’s estimation of AU10 is higher for
lighter faces than darker faces.

While the shape of the AU10 activations for ModelDarker looks
similar to the AU10 activations for ModelAll, seen in Table 4, we
notice that the MAD is lower across all of the skin tones, suggesting
how the distribution of skin tones in the training set may impact
the performance and biases of the AU Estimation network.

The contrasting behavior of ModelLighter and ModelDarker
highlights the influence of the training data’s skin tone distribu-
tion on the models’ performance. While ModelLighter showed
diminished performance on darker skin tones, ModelDarker had
smaller and more varied performance changes, with overall slightly
increased performance on AU10, but overall slightly decreased
performance on AU4 relative to ModelAll.

While these outcomes alone do not conclusively prove racial
bias, they provide an indication that the model’s performance may
vary based on skin color. This study suggests that there may be

room for improvement in ensuring equitable performance across
different skin tones, contributing to ongoing discussions around
bias in facial expression models.

4 DISCUSSION
The aim of this project was to investigate the presence of skin
color bias in FER, specifically in relation to the AU recognition.
We explored this through a series of experiments using synthetic
faces that differ only in skin color and systematically varying the
activation of specific AUs. Our results reveal information into how
model training, with respect to the distribution of skin tone, can
influence performance and potentially contribute to bias.

Our first experiment, using the AU Estimator model trained
on synthetic faces, exhibited indications of a skin color bias. The
paired t-tests analysis showed statistically significant differences
in AU and PSPI scores between light and dark-skinned faces that
were identical in all aspects except skin color. This finding suggests
that the model may include biases related to skin tone, affecting
its accuracy and fairness in processing faces with varying skin
tones. Subsequent experiments on AU4 and AU10 activation further
supported the existence of a skin color bias in our AU Estimator,
demonstrated contrasting color biases across AUs, and showed that
these biases may not be uniform or predictable across skin tones and
AUs. ModelLighter, trained on lighter tones, demonstrated reduced
effectiveness in tracking activation as skin tones got darker, while
ModelDarker demonstrated smaller and more varied changes in
performance. The interaction between model and dataset biases
reflected in the ModelDarker and ModelLighter results indicates
the complexity of the skin-tone bias issue.

There are several limitations to acknowledge. Firstly, the size of
the dataset was relatively small (940 faces). Secondly, the dataset
lacked diversity in terms of ethnicity, morphology, pose, lighting,
etc. We only included European faces of the same morphology, so
our results may not extend to faces of other ethnicities or charac-
teristics. Thirdly, we only evaluate a single model and a limited
selection of AUs. The biases of other FER models may differ, which
suggests the need for testing a broader range of models. Addition-
ally, our use of synthetic faces may not fully capture the complexity,
nuances, and variability of real human faces. Consequently, the
biases observed may not fully reflect those in real-world scenarios.

Our findings highlight the complexity of skin color model bi-
ases and the impact of training distribution for FER models. Our
research also demonstrates the utility of synthetic faces as a means
for systematic evaluation of FER models, facilitating controlled,
targeted investigations of bias, and collecting data, especially in the
context of facial data, where data collection may be slow, expensive,
and/or sensitive. In future work, we will leverage synthetic images
to help identify and mitigate the root of racial biases in FER models.
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