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Abstract
While the majority of current knowledge graphs remain in-
complete, a plethora of models have been proposed with
the intent of predicting the missing facts within them. In
recent years, multi-layer models that leverage Convolutional
Neural Networks (CNNs), such as Convolutional 2D Knowl-
edge Graph Embeddings (ConvE), have exhibited superior
performance over their shallower counterparts. The key to
their success is largely due to the intricate interplay between
entity and relation embeddings. In this study, we present
ConvRE, a refined version of the ConvE model, and disclose
our state-of-the-art results across multiple datasets. We fur-
ther introduce a quantifiable measure of interaction, termed
’interaction length,’ and propose an innovative approach to
reshaping both relation and entity embeddings with the aim
of intensifying their interaction. Upon employing these re-
shaping techniques, we successfully enhance the MRR score
of the ConvE model by up to 3.28% (FB15K-237) and 3.72%
(WN18RR). In addition, we conduct an in-depth analysis of
the correlation between the degree of feature interaction and
model performance. This exploration substantiates our as-
sertion that augmenting the number of interactions between
embeddings facilitates superior link prediction performance.

CCS Concepts: • Information systems → Data mining;
• Computing methodologies → Neural networks.

Keywords: Knowledge Graph, Knowledge Graph Embed-
ding, Link Prediction

1 Introduction
Knowledge graphs (KGs) aremulti-relational graphs inwhich
nodes symbolize entities and edges denote the relationships
between these entities. Entities and relations are structured
in the form of knowledge triples (s, r, o), signifying a relation
’r’ between a subject entity ’s’ and an object entity ’o’. These
knowledge graphs find extensive applications in real-world
scenarios, such as recommender systems [7, 19], information
retrieval [4], and information extraction [3, 8].

Several knowledge bases (KBs) exist today, including Free-
base [1], WordNet [9], and YAGO [13]. However, a significant
number of these knowledge graphs are marred by incom-
pleteness [6]. Link Prediction (LP) is a promising approach
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that aims to predict missing facts among entities already
present in a KG [12]. Many link prediction models leverage
knowledge graph embedding [2, 17, 18]. By learning low-
dimensional representations of entities and relations, these
models can predict missing facts in incomplete knowledge
graphs.
In recent years, multi-layer models employing Convolu-

tional Neural Networks (CNNs) have seen an upsurge in
popularity, thanks to their superior performance over their
shallower counterparts [5, 16]. The application of multiple
convolutional layers to the embeddings of both entities and
relations enables these models to learn more expressive and
rich features. The success of CNN-based models can largely
be attributed to the enhanced interactions between the em-
beddings, which lead to more meaningful representations.

In this paper, we propose ConvRE (Convolutional Knowl-
edge Graph Link Prediction with Reshaped Embeddings), a
model that not only builds upon but also improves ConvE.

Our contributions are specific and distinct:
• We enhance the performance of the ConvE model by
up to 3.28% (FB15K-237) and 3.72% (WN18RR) after
applying reshaping techniques on embeddings.

• We suggest a novel approach for reshaping relation
and entity embeddings to augment their interactions.
The relation technique is demonstrated in Figure 1.

• We provide a quantitative definition of interaction –
’interaction length.’ This metric measures the length of
the contact surface between entity and relation embed-
dings. A greater interaction length signifies a higher
degree of interaction.

• We further establish that increasing the number of
interactions between embeddings enhances link pre-
diction performance.

Please find the instructions for reproducing the results at
https://github.com/yanhong-lbh/ConvRE.

2 Related Work
Current Knowledge Graph Embedding (KGE) models broadly
fall into three categories: (i) translation-based models (geo-
metric models), (ii) tensor decomposition models, and (iii)
neural network models [20].

• Translation-basedmodels: Over the past few decades,
the advent of the TransE [2] model has spurred a
wealth of research on neural link prediction models.
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Figure 1. A 2D demonstration of reshaping embeddings by setting different interaction lengths. Here, we assume the shapes of
the entity’s and relation’s embeddings are (1, 8) and that the convolutional filter’s shape is (2,2). The embeddings are reshaped
into shapes of (4, 2), (2, 4), and (1, 8). After concatenation, the interaction lengths are 2, 4, and 8, respectively, demonstrating an
increasing degree of interaction.

Early models like TransE [2] and TransH [17] deploy
dot products and matrix multiplications in their score
function computations.

• Tensor decomposition models: These models posit
that the score of a triple can be factorized in the form
of tensors. Several tensor factorization-based models
have been proposed, such as the Bilinear Diagonal
model (DistMult) [18], and the ComplEx model, an ex-
tension of the DistMult model into the complex space
[15].

• Neural networkmodels: Recent studies have demon-
strated that enhancing interactions between entity
and relation embeddings can bolster a model’s expres-
siveness [11, 18]. This insight has spurred many re-
searchers to focus on feature interactions between
embeddings. The Convolutional 2D Knowledge Graph
Embeddings (ConvE) model, for instance, uses 2D con-
volutions over embeddings for link prediction in knowl-
edge graphs. It comprises a single convolution layer
followed by a projection layer to the embedding di-
mension and subsequently an inner product layer [5].
ConvKB [10] employs a convolution layer over the
embeddings of the head entity, relation, and tail en-
tity. Inspired by ConvE, InteractE further optimizes
the performance of embeddings by intensifying fea-
ture interactions, utilizing three key concepts: Feature
Permutation, Checkered Reshaping, and Circular Con-
volution.

Most existing KGE models predict missing links by opti-
mizing a score function. In Table 1, we summarize the score
functions of several KGE models. The vectors e𝑠 , e𝑟 , and e𝑜
refer to the subject embedding, the relation embedding, and
the object embedding, respectively. In the ComplEx model,
e𝑠 , e𝑜 ∈ C𝑘 , whereas in all other models, e𝑠 , e𝑜 ∈ R𝑘 . Here, 𝑘

Table 1. Scoring Function of Various KGE Models

Model Scoring Function𝜓 (𝑒𝑠 , 𝑒𝑟 , 𝑒𝑜 )
TransE ∥𝑒𝑠 + 𝑒𝑟 − 𝑒𝑜 ∥𝑝
DistMult ⟨𝑒𝑠 , 𝑒𝑟 , 𝑒𝑜⟩
HolE ⟨𝑒𝑟 , 𝑒𝑠 ∗ 𝑒𝑜⟩
ComplEx Re (⟨𝑒𝑠 , 𝑒𝑟 , 𝑒𝑜⟩)
ConvE 𝑓 (vec (𝑓 ( [𝑒𝑠 ; 𝑒𝑟 ] ★𝑤))W) 𝑒𝑜
ConvRE 𝑓 (vec (𝑓 (𝑔 (𝑒𝑠 ; 𝑒𝑟 ) ★𝑤))W) 𝑒𝑜

denotes the embedding size, andC andR denote the complex
and real-valued spaces, respectively. The symbol ∗ denotes
circular-correlation, while ★ denotes convolution.

In this paper, ConvRE focuses on improving 𝑔 (𝑒𝑠 ; 𝑒𝑟 ), the
reshaping function, to achieve superior performance in link
prediction.

3 Model
In this paper, we introduce ConvRE, a model that proposes
a novel feature reshaping method to enhance the model’s
expressiveness. We define the interaction length between
entity and relation embeddings as the length of the contact
line between the two. Our findings suggest that expanding
the interaction length between the entity and relation em-
beddings prior to the concatenation process can increase a
model’s expressiveness.
The default embedding size for ConvE is 200, and the

default value for the first dimension (number of rows) of
the reshaped 2D embedding is 20. It can be inferred that the
default shape of both the entity and relation embeddings is
(20, 10), with 20 rows and 10 columns. The ConvE model opts
to concatenate the two embeddings on the first dimension
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Table 2. Nine Combinations of Shapes and Their Corresponding Interaction Length

Shape of Embeddings Shape After Concatenation Interaction Length

(50, 4) (100, 4) 4
(40, 5) (80, 5) 5
(25, 8) (50, 8) 8
(20, 10) (40, 10) 10
(10, 20) (20, 20) 20
(8, 25) (16, 25) 25
(5, 40) (10, 40) 40
(4, 50) (8, 50) 50
(2, 100) (4, 100) 100

Table 3. Statistics of datasets

Dataset |E | |R| # Triples

Train Valid Test

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134

(rows) of the embedding’s shape, resulting in a shape of (40,
10) after concatenation, and an interaction length of 10.

Building upon the ConvE model, ConvRE reshapes the
embeddings before stacking them along their rows. ConvRE
tests all possible combinations of the number of rows and
columns of the embedding shape. In total, there are nine
different embedding shapes (Table 2), with the interaction
length ranging from 4 to 100.

Among the nine embedding shapes, (20, 10) is the default
shape used by the ConvE model, comprising 20 rows and 10
columns. The following shapes of entity/relation embeddings
are omitted: (200, 1), (100, 2), and (1, 200). This is because the
shapes after concatenation for these reshaped embeddings
are (400, 1), (200, 2), and (2, 200), all of which have a dimen-
sion that is smaller than the default kernel size (3, 3) used by
the ConvE model.

4 Experiment Setup
• Datasets: We evaluate ConvRE primarily on two of
the most commonly used datasets: FB15k-237 [14] and
WN18RR [5]. More details about these datasets are
shown in Table 3.

• Baselines: We compare ConvRE with DistMult [18] ,
ComplEx [15], and ConvE [5].

• Evaluation protocol: We follow the standard eval-
uation metrics: Mean Reciprocal Rank (MRR), Mean
Rank (MR), Hits@10, Hits@3, and Hits@1.

5 Results
In this section, we attempt to answer the following questions:

• Q1: How does ConvRE perform compared with the
baselines? (Section 5.1)

• Q2: What is the effect of increasing the interaction
length on the model’s performance? (Sections 5.2 and
5.3)

• Q3: For the FB15K-237 dataset, why does the shape
(2, 100), the one with the highest degree of feature
interactions, have worse performance compared to its
(8, 25), (5, 40), and (4, 50) counterparts? (Section 5.2)

• Q4: Why do abnormal values only appear in results on
FB15K-237, but not on the WN18RR dataset? (Section
5.3)

5.1 Performance Comparison
We compare ConvRE against DistMult [18], ComplEx [15],
and ConvE [5] on the FB15k-237 and WN18RR datasets.
The results are summarized in Tables 4 and 5. Since our
model aims to improve ConvE, we specifically compare
it against this model. The results show that ConvRE out-
performs ConvE across four out of five metrics on FB15k-
237 (MRR, MR, Hits@10, Hits@3) and across all metrics for
WN18RR (MRR, MR, Hits@10, Hits@3, Hits@1). After apply-
ing reshaping techniques, ConvRE achieves an improvement
of 3.28% and 3.72% on FB15k-237 and WN18RR on MRR over
ConvE, respectively. When comparing with other baseline
KGE methods, ConvRE outperforms DistMult and ComplEx
across all metrics on both FB15k-237 and WN18RR datasets.
These results validate the effectiveness of ConvRE.

5.2 Effects of Feature Interaction on FB15k-237
We find that, except for the last data point, which represents
an interaction length of 100, increasing the number of in-
teractions between embeddings improves the performance
of link prediction. According to Figure 2, up until the inter-
action length reaches 50, there is a roughly positive linear
relationship between the interaction length of the embed-
dings and MRR. The reason why an interaction length of 100
performs worse than previous feature interaction variations
is explained as follows:
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Table 4. Link prediction results for FB15K-237

Model Shape MRR MR Hits@10 Hits@3 Hits@1

DistMult [18] – .241 254 .419 .263 .155
ComplEx [15] – .247 339 .428 .275 .158
ConvE [5] – .316 246 .491 .350 .239

ConvRE (Proposed Method)

(50, 4) .319 245 .496 .351 .230
(40, 5) .320 228 .497 .349 .232
(25, 8) .320 245 .499 .351 .232
(20, 10) .321 242 .500 .352 .232
(10, 20) .323 241 .502 .355 .235
(8, 25) .325 243 .507 .359 .234
(5, 40) .327 248 .508 .359 .237
(4, 50) .327 246 .507 .359 .237
(2, 100) .323 265 .508 .356 .232

Table 5. Link prediction results for WN18RR

Model Shape MRR MR Hits@10 Hits@3 Hits@1

DistMult [18] – .43 5110 .49 .44 .39
ComplEx [15] – .44 5261 .51 .46 .41
ConvE [5] – .43 4766 .51 .44 .39

ConvRE (Proposed Method)

(50, 4) .427 4969 .502 .438 .393
(40, 5) .427 4791 .499 .440 .393
(25, 8) .428 4883 .498 .440 .394
(20, 10) .430 4971 .501 .442 .397
(10, 20) .431 5083 .501 .444 .397
(8, 25) .431 4953 .506 .444 .397
(5, 40) .433 5139 .505 .444 .399
(4, 50) .433 4754 .508 .443 .399
(2, 100) .446 4712 .516 .460 .412

Both the size of the hidden layers (trainable parameters in
the hidden layers) in the ConvREmodel (i.e., hidden size) and
the degree of feature interaction may affect the effectiveness
of the model for link prediction. A larger hidden size and
more feature interaction benefit the model’s performance.
The abnormal results for shape (2, 100) are mainly due to the
decrease in hidden size, which severely harms the perfor-
mance of the model and offsets the positive effect of feature
interaction on the model’s expressiveness.

The default hidden size in the ConvE model is 9728, asso-
ciated with the embedding shape (20, 10). The hidden size
is 10368 for the embedding shape (10, 20), 10304 for (8, 25),
9728 for (5, 40), 9216 for (4, 50), and 6272 for (2, 100). All the
hidden sizes listed above, except the last one, are within 6.6%
of the default hidden size. The differences between these
hidden sizes are relatively small and thus have only a limited

impact on the model’s performance. This makes the model’s
performance mostly dependent on the interaction length.
Our analysis aligns with Figure 2, where a positive linear
relationship appears when the hidden size stays roughly
constant.
However, in the case of (2, 100), the hidden size is 35.5%

smaller than the default. This significant drop in hidden size
severely reduces the number of parameters that could be
trained, harms the performance of the model, and diminishes
the effects of feature interactions. Therefore, we can see a
sudden decrease in MRR at an interaction length of 100 in
Figure 2.

5.3 Effects of Feature Interaction on WN18RR
Similarly, we find that increasing the interaction length im-
proves performance. According to Figure 3, there is a roughly



Convolutional Knowledge Graph Link Prediction with Reshaped Embeddings KDD-UC, August 7, 2023, Long Beach, CA

Figure 2. Performance on the data of FB15k-237 with differ-
ent interaction lengths

Figure 3. Performance on the data ofWN18RRwith different
interaction lengths

positive linear relationship between the interaction length
of the embeddings and MRR.

Unlike FB15k-237, the results for WN18RR do not contain
any abnormal values. This is because, according to the statis-
tics of the datasets (see Table 3), the training set for WN18RR
contains 86,835 triples, which is 68.1% smaller than the size
of the FB15K-237 dataset’s training set. This means the num-
ber of trainable parameters required for WN18RR should be
smaller than that needed for FB15K-237, i.e., the hidden layer
size of 6272 under the (2, 100) reshaping setting is sufficient
for the smaller dataset, WN18RR. Therefore, when the num-
ber of parameters associated with hidden layers diminishes,
although the performance of the model on FB15K-237 wors-
ens, the results on WN18RR remain relatively unaffected.

6 Conclusion
In this paper, we propose ConvRE, a novel KGE model that
improves the performance of ConvE by reshaping the em-
beddings of entities and relations. We offer a quantitative
definition of feature interaction, named interaction length.
Through experiments, we provide empirical evidence that

by increasing feature interactions, the performance of link
prediction on various datasets can be consistently improved.
We suggest that future work could further explore novel
approaches for increasing feature interactions to complete
the existing knowledge graphs.
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