
Predicting Time to Pushback of Flights in U.S. Airports
Daniil Filienko∗
Yudong Lin∗
Kyler Robison∗
Trevor Tomlin∗

Martine De Cock†
daniilf@uw.edu
ydlin@uw.edu

kylerr10@uw.edu
ttomlin@uw.edu
mdecock@uw.edu

School of Engineering and Technology, University of Washington Tacoma
Tacoma, Washington, USA

ABSTRACT
Air traffic management systems need to predict many details about
flights as accurately as possible. Of particular interest is the push-
back time, i.e. the moment at which an aircraft is pushed backwards,
away from its parking position at the gate. Accurate pushback time
predictions can in turn yield more accurate predictions of takeoff
time. In this paper we propose a gradient boosting decision tree
model for pushback time prediction, trained on a rich feature set
encompassing data about weather, airport activity, airline, and air-
craft characteristics. In evaluating our approach on a large dataset
with data from 10 U.S. airports, we found that training one local
model for each airport is more memory efficient, while yielding a
mean absolute error at par with a global model trained over the data
of all airports combined. Our approach was among the winners of
the 2023 “Pushback to the Future” competition hosted by NASA.

CCS CONCEPTS
• Computing methodologies → Ensemble methods; Feature
selection; • Applied computing→ Transportation.

KEYWORDS
flight time, gradient boosting decision trees, feature engineering

ACM Reference Format:
Daniil Filienko, Yudong Lin, Kyler Robison, Trevor Tomlin, and Martine
De Cock. 2023. Predicting Time to Pushback of Flights in U.S. Airports. In
Proceedings of Make sure to enter the correct conference title from your rights
confirmation email (Conference acronym ’XX). ACM, New York, NY, USA,
6 pages. https://doi.org/XXXXXXX.XXXXXXX

∗Contributed equally to the paper
†Guest Professor at Ghent University

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
To efficiently use the limited capacity of airports and runways, air
traffic management systems rely on predictions made by machine
learning (ML) models about many correlated aspects of each flight,
such as the estimated time that a departing flight will leave the gate,
the taxi time, and the estimated time of departure [4–6]. In this
paper we describe a model that we designed and trained in response
to the 2023 “Pushback to the Future” competition hosted by NASA,1
in which participants were challenged to develop models for accu-
rate prediction of the pushback time of a flight, i.e. the moment at
which a departing aircraft is pushed back from its parking position
at the gate. Accurate predictions of pushback time can in turn yield
more accurate predictions of flight takeoff time.

The pushback time of flights is influenced by a myriad of factors,
including the weather, the activity level at the airport, the airport
configuration, and characteristics of the aircraft and the airline. We
describe in this paper how we derived a feature set that captures
this information from available weather and air traffic data, and
how we successfully trained gradient boosting decision tree models
over this feature set to minimize cumulative MAE (mean absolute
error). When evaluating our approach on a large set of data from
10 U.S. airports, we found that the same low MAE can be obtained
whether one trains a global model on the data of all airports com-
bined or whether one trains a local model for each airport, the latter
strategy being computationally more efficient.

After describing the data and the problem in more detail in
Sec. 2, in Sec. 3 we provide an overview of our ML pipeline and a
detailed overview of the feature set. In Sec. 4 we present the results
of our method when evaluated on a held-out validation set and
compared with a baseline strategy. In Sec. 5 we conclude with our
main findings and directions for future work.

2 DATA AND PROBLEM DESCRIPTION
Throughout this paper, by “pushback time” we mean the moment
at which an aircraft departs from the gate. We address the problem
of predicting the number of minutes until pushback time. For a given
flight, it is useful to estimate this time gap repeatedly at various

1https://www.drivendata.org/competitions/182/competition-nasa-airport-pushback-
prescreened/

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://www.drivendata.org/competitions/182/competition-nasa-airport-pushback-prescreened/
https://www.drivendata.org/competitions/182/competition-nasa-airport-pushback-prescreened/

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Filienko, Lin, Robison, Tomlin and De Cock

Figure 1: Machine learning pipeline with data preprocessing (including feature extraction), training, and validation steps

Table 1: Sample instances showing minutes_until_pushback
beginning at 04:00:00 for a flight at Chicago O’Hare (KORD)

gufi

SKW5143.ORD.EAU.201031.0059.0006.TFM

timestamp airport minutes_until_pushback

2020-11-15 04:00:00 KORD 85
2020-11-15 04:15:00 70
2020-11-15 04:30:00 55
2020-11-15 04:45:00 40
2020-11-15 05:00:00 25
2020-11-15 05:15:00 10

points before the plane’s actual departure. As illustrated in Tab. 1,
each instance for which a prediction needs to be made is charac-
terized by the flight’s Globally Unique Flight Identifier (gufi) [1],
a timestamp, and the departure airport. The last column in Tab. 1
corresponds to the target variable.

We trained and evaluated our models on data made available in
the prescreened arena of the “Pushback to the Future” competition.1
The data encompasses 3,836,894 flights across 10 airports of depar-
ture in the U.S.. As described in Sec. 3.1, we split the data into train
and validation data without overlap between gufis in train and val-
idation data (see Tab. 2). Each instance in the dataset corresponds
to a row of the form shown in Tab. 1. The number of instances in
Tab. 2 is much larger than the number of gufis, because there are
on average (more than) 6 instances per gufi, as illustrated in Tab. 1.

The data contains auxiliary information and measurements for
each airport that can be leveraged to improve the accuracy of push-
back time prediction: (1) estimated departure (takeoff) times of the
plane from the runway into the air; (2) actual runways and runway
arrival and departure times; (3) active runway configuration at dif-
ferent times; (4) metadata about the flight and aircraft (engine class,
aircraft type, etc.); (5) actual gate arrival and departure times; (6)
time when flights started to be tracked by the National Airspace
System (NAS); and (7) weather predictions for the airport.

Table 2: Flight dataset statistics

train data validation data
airport #gufis #instances #gufis #instances

KATL 540,273 3,321,960 50,165 305,397
KCLT 381,045 2,218,680 35,708 199,808
KDEN 451,366 2,963,510 42,522 284,439
KDFW 498,426 3,210,397 46,279 298,854
KJFK 203,538 1,278,767 16,609 99,993
KMEM 151,768 1,236,371 13,860 121,167
KMIA 232,846 1,456,633 20,923 126,651
KORD 487,075 3,052,963 46,708 297,823
KPHX 279,203 1,757,201 26,024 163,252
KSEA 286,416 3,511,956 26,140 158,018

total 3,511,956 24,008,438 324,938 2,055,402

The weather data originates from the Localized Aviation MOS
(Model Output Statistics) Program (LAMP), a weather forecast ser-
vice operated by the National Weather Service.2 The rest is air
traffic data that is collected through Fuser, a NASA data process-
ing platform that processes the Federal Aviation Administration
(FAA)’s raw data stream and distributes cleaned, real-time data on
the status of individual flights nationwide [2].

Except for the aircraft metadata, all data points are associated
with timestamps. When making a prediction for a given flight at
a given timestamp 𝑡 , only auxiliary data with a timestamp 𝑡 ′ such
that 𝑡 ′ ≤ 𝑡 can be leveraged. In particular, the actual runway and
the actual gate and runway departure time of a flight are not known
yet at the time of prediction. Such information about flights that
have already departed can however be used to estimate the current
level of activity at an airport. For more details about the data, we
refer to the competition webpage.3

3 METHOD
3.1 System Overview
We follow a strategy similar to studies that have been done on
the related subject of flight delay classification [4], which tend

2https://vlab.noaa.gov/web/mdl/lamp
3https://www.drivendata.org/competitions/182/competition-nasa-airport-pushback-
prescreened/

https://www.drivendata.org/competitions/182/competition-nasa-airport-pushback-prescreened/
https://www.drivendata.org/competitions/182/competition-nasa-airport-pushback-prescreened/

Predicting Time to Pushback of Flights in U.S. Airports Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 3: Overview of features

Airport features Agg Description

airport Name of the departure airport associated with the particular gufi.
1hr_ETDP ✓ Average departure delay, time between estimated and true departure time in the past hour.
deps_nhr ✓ Number of flights that have departed from the prediction airport in the past 𝑛 hours.
arrs_nhr ✓ Number of flights that have arrived at the prediction airport within the past 𝑛 hours.
deps_taxiing ✓ Number of flights that departed from the runway in the past 30 hours.
exp_deps_nmin ✓ Number of flights expected to depart from the prediction airport within the next 𝑛 minutes.
delay_nhr ✓ Average difference between the estimated and true departure time of all flights at the prediction airport within the past 𝑛

hours. [4]
standtime_nhr ✓ Average difference between the first position (timestamp of gufi creation) and pushback time at the origin airport for all

arrival flights at the prediction airport in the past n hours.
dep_taxi_nhr ✓ Average time that all departing flights in the past 𝑛 hours spent taxiing.
minutes_until_etd ✓ Number of minutes between the prediction timestamp and the most recent departure prediction for the flight, i.e. the

number of minutes until the estimated time of departure (etd). The etd as predicted by the Fuser system is readily available
in the data; it varies substantially in accuracy.

gufi_lifespan ✓ Number of minutes between the prediction timestamp and when the flight gufi has originated.
derived_destination Last 3 characters of the ICAO code for the flight’s destination airport, extracted from the gufi string. [4]
departure_runways Collection of runway names currently utilized at the airport for departures.
arrival_runways Collection of runway names currently utilized at the airport for arrivals. [4]

Time features Agg Description

minute Minute of the prediction timestamp.
hour Hour of the prediction timestamp. [4]
day Day of the month of the prediction timestamp.[4]
weekday Weekday of the prediction timestamp. [4]
month Month of the prediction timestamp. [4]
year Year of the prediction timestamp.

Aircraft and airline features Agg Description

derived_carrier The code of the airline operating the flight, extracted from the gufi string. It is valuable because certain companies may
have unique pushback tendencies, such as FedEx (FDX), which is a large cargo carrier. FDX is a great example of a carrier
that makes this feature so useful because the nature of how they operate directly affects the pushback time. Their flights
park in different parts of the airport, load only cargo, and often operate at volume throughout the nighttime; times
when passenger flights often see a drop in frequency. Apart from this major example, many passenger airlines operate
differently from one another, a difference which was also successfully learned by the model.

major_carrier Code of the airline operating the flight. For small, regional flights that major airlines have operated by smaller airlines,
this code will be that of the larger airline that is doing the contracting. [4]

aircraft_type Model of the aircraft in a short string. “Boeing 737-800” would be represented as “B738”.
flight_type Type of flight, “scheduled air transport” or not (most flights are the former).

Weather features Agg Description

temperature Temperature reading around the destination airport.
wind_direction Wind direction in compass heading divided by 10 and rounded to the nearest integer (to match runway codes).
wind_speed Wind speed in knots.
wind_gust Wind gust speed in knots.
cloud_ceiling Cloud ceiling height in feet encoded categorically.
visibility Visibility in miles encoded categorically.
cloud Cloud cover encoded categorically.
lightning_prob Probability of lightning encoded categorically.

to process raw data obtained from various sources, merging and
aggregating the data based on timestamps, extracting features, and
encoding categorical features to be able to utilize them in model
training and validation. We follow that approach, as presented in
Fig. 1, with the additional steps of saving the models and separating
the resulting dataset into training and validation dataset by gufi, so
that the same flight does not occur in both training and validation
datasets, and both datasets have flights that have varying departure
times, in order to best emulate a real deployment scenario.

Data preprocessing and feature extraction. Our approach relies
heavily on feature engineering. Sec. 3.2 contains an overview of the
features that we extract from the raw data by performing various
operations, such as calculating future expected values, recording
average differences, or counting occurrences of flights satisfying
certain relevant conditions. Unlike Kiliç and Sallan [4] we do not
remove rows with missing attributes. Instead we use various data

imputation approaches, including (1) forward fill, if the data up-
dates were rare across timestamps and did not change in between,
(2) replacing the missing values with a mean value of the feature,
or, more frequently, (3) treating the absence of a value as a sepa-
rate feature value, labeling it as ‘UNK’. We encode all categorical
features with ordinal encoders, mapping categorical feature values
to integers and creating a separate category for null data points to
account for the absence of data.

Model training and validation. We train gradient boosting deci-
sion tree models [3] over the extracted features. We train a global
model M over the data of all airports combined, as well as 10 local
modelsM1,M2, . . . ,M10 trained separately on the data of each air-
port. After model training, we evaluate the models on the validation
data. To compute the cumulative MAE, we take the weighted aver-
age of the individual airport results with the weights representing
the relative size of the validation dataset for each airport.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Filienko, Lin, Robison, Tomlin and De Cock

Table 4: Results in terms of MAE

baseline MLP LightGBM

airport ETD-15 global local global local

KATL 11.6135 8.0039 7.9851 7.8549 7.8682
KCLT 12.4652 9.4824 9.5111 9.3135 9.3352
KDEN 15.1364 12.0029 12.1098 11.9466 11.9446
KDFW 15.5376 12.3230 12.2801 12.0823 12.1768
KJFK 14.7204 11.5790 12.0592 11.1881 11.1143
KMEM 25.9130 18.7407 18.8432 17.7555 17.8176
KMIA 14.6529 12.4397 12.9948 11.9421 12.0881
KORD 14.5247 11.3000 11.4879 11.1351 11.2458
KPHX 12.5830 9.7497 9.6736 9.3849 9.4106
KSEA 10.1884 7.5612 9.6736 7.2195 7.2300

All 14.3250 10.9883 11.0500 10.7232 10.7686

3.2 Feature Overview
Our models consume more than 30 features that are either readily
available or that are extracted by aggregating relevant information.
The features capture weather conditions around the airport, and
air traffic data to gauge the busyness at the given airport. Features
of the latter kind are included based on the common-sense assump-
tion that busier airports tend to be less efficient and therefore could
have slightly different average pushback time. Tab. 3 contains an
overview of all features, separated in four feature categories de-
scribed below. The column “Agg” in Tab. 3 indicates whether the
values of the feature are obtained by aggregating information from
two or more rows of data as opposed to extracted directly from one
data point. The terms “prediction airport” and “prediction times-
tamp” systematically refer to the airport and the timestamp in the
instances for which predictions need to be made, or, during training
time, the airport and the timestamp in the labeled instances such
as those in Tab. 1.
• Airport busyness features: included with the common-sense
assumption that flights are more likely to be delayed or resched-
uled, increasing their pushback time, when there are many other
flights arriving or waiting to depart around the same time.

• Time features: used as an indirect measure of the busyness of
an airport, reflecting the assumption that airports do not operate
with the same efficiency/capacity at different times of the day.

• Aircraft features: correlating with total passenger/cargo carried
by the flight, its speed, length of preparation needed to fly, and
other characteristics.

• Weather features: includes the probability of lightning, type of
clouds, and other information, which can potentially be strongly
correlated to the current capacity and measure of congestion in
the airport, since in severe conditions, flights can be canceled or
delayed, affecting average flight pushback time.
We arrived at this feature set through a trial-and-error feature

engineering process in which we repeatedly applied the model
training and validation steps (see Fig. 1) for a growing feature set,
inspecting the resulting feature importance graphs (such as the one
presented in Fig. 2) to analyze model performance and to remove
features with low importance. Knowing that expanding the feature
set could increase the risk of overfitting, we built out the feature

set in a greedy bottom-up manner, adding one feature at a time
and only maintaining features that yielded a consistent significant
improvement on the training and the validation data. As we report
in Sec. 4, our final models were evaluated on a separate “hidden”
test set. Unlike the training and validation data, we did not use
this test data during training, feature selection, or hyperparameter
tuning at all.

4 RESULTS
4.1 Experimental setup
Tab. 4 shows the mean absolute error (MAE) on the validation data
(see Tab. 2) of predictions obtained with five different approaches:4

(1) Baseline method, based on the rough assumption that pushback
starts around 15 minutes before departure time. To make a
prediction with this baseline method, we compute the estimated
number of minutes until pushback as minutes_until_etd −15.
See Tab. 3 for a description of the feature minutes_until_etd.

(2) Global MLP model, which is a neural networkM trained over
the features in Tab. 3 and across the data of all airports combined.
We use the same global model M to make predictions for each
airport.

(3) Local MLP models, which are neural networks M1,M2, . . . ,
M10 trained separately on the data of each airport, using the
same feature set as the global MLP model. We make predictions
for each airport using the appropriate corresponding local MLP
model that was trained on the data from that airport.

(4) Global tree model, which is a LightGBM model trained over the
features in Tab. 3 and across the data of all airports combined.

(5) Local tree models, which are LightGBM models trained sepa-
rately on the data of each airport, similar as approach (3).

The cumulative MAE in the bottom row of Tab. 4 is a weighted
average of the MAEs of the individual airports, with the weights
representing the relative size of the validation dataset for each
airport.

To train the gradient boosted decision tree models, we used the
LightGBM library5 with the default hyperparameter settings unless
noted otherwise. We used LGBMRegressor with objective function
regression_l1 which means that the model was trained to mini-
mize the MAE of the predictions. The num_leaves hyperparameter
controls how many leaves each weak learner has. A higher number
of leaves can increase the model’s performance, but it can also lead
to overfitting on the data. In this case, the value of 4096 was chosen
because we found that during hyperparameter tuning using Op-
tuna6 it achieved the lowest MAE on the validation dataset. Finally,
the n_estimators hyperparameter determines the number of trees
in the LightGBM model. Through the use of Optuna and manual
tuning, we selected value 128 for the number of estimators (trees).

To train the MLPs, we utilized TensorFlow.7 Each MLP consists
of a normalization layer, followed by three dense ReLU layers with
32, 64, and 64 neurons respectively, and a linear layer with 1 output

4Wewill make the code repository public when Phase 2 of the "Pushback to the Future"
competition ends. tinyurl.com/flhuskies
5https://lightgbm.readthedocs.io/
6https://optuna.org/
7https://www.tensorflow.org/api_docs/python/tf

tinyurl.com/flhuskies
https://lightgbm.readthedocs.io/
https://optuna.org/
https://www.tensorflow.org/api_docs/python/tf

Predicting Time to Pushback of Flights in U.S. Airports Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 2: KATL Airport Feature Importance

neuron. We used MAE as the loss functions and the default setting
for other hyperparameters.

While the results for MLP in Tab. 4 are worse than those for
LightGBM, we acknowledge that the MLP results could potentially
be improved through further hyperparameter tuning, at a sizable
computational cost. Indeed, training LightGBM models on the ex-
tracted feature set requires less than an hour (see Sec. 4.2.3 for
hardware specifications), allowing rapid prototyping and tuning,
while the global MLP model requires 3 hours of training, and an en-
semble of local MLP models requires upwards of 8 hours of training.
In the remainder of the paper, we focus on the LightGBM results.

4.2 Utility and Efficiency Analysis
4.2.1 Utility Results. As can be seen in Tab. 4, the baseline model
results in a mean absolute error (MAE) of 14.325, meaning that
predictions made by the baseline model differ, on average, approx-
imately 14 minutes from the actual pushback time. Predictions
made by the baseline model are obtained by subtracting 15 minutes
from theminutes_until_etd feature in Table 3, which is in itself
based on an estimate of the time of departure that is made available
through NASA’s data processing platform Fuser. Errors made by
the baseline model therefore accumulate from two different sources,
namely (1) lack of accuracy in estimates of the time of departure as
available through the Fuser system; and (2) the interval between
the moment of pushback and the actual departure of the aircraft
from the runway is not (always) precisely 15 minutes.

As shown in the other columns of Tab. 4, the baseline predictions
can substantially be improved upon by incorporating all the other
features from Tab. 3. While building out our feature set, as described
in Sec. 3, we observed that for smaller subsets of features the “local
model” based approach would result in lowerMAEs than the “global
model” based approach. When training LightGBM models over the
entire feature set from Tab. 3 however, the global model and the
local model based approaches are at par, yielding an MAE or around
10.7 on the validation data, which is a substantial improvement
over the 14.3 baseline result.

Another interesting observation from Tab. 4 is that the MAE
varies significantly between the different airports, with the same
trend manifesting itself across all approaches. The average predic-
tion errors vary from around 7 minutes for Seattle-Tacoma Inter-
national Airport (KSEA) to more than 17.5 minutes for Memphis
International Airport (KMEM). We conjecture that the latter stems
from KMEM’s role as the busiest cargo airport in the U.S..

4.2.2 Feature Importance Analysis. Fig. 2 represents the relative
importance of each feature used in the LightGBM model for the
KATL airport, computed by calculating the total gains of splits
which use the feature, as specified in the LightGBM description.8
Each of the features individually may vary in its relative importance
for each airport, but in general, the placement does not change

8https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.plot_importance.
html

https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.plot_importance.html
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.plot_importance.html

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Filienko, Lin, Robison, Tomlin and De Cock

drastically, with an exception of KMEM, potentially because of its
unique status as primarily a cargo airport.

As can be expected, the most important feature for predicting
true pushback is the estimated time of departure (etd), which pro-
vides an “anchor” from which we can approximate the time push-
back will happen, since the pushback happens shortly before the
departure from the runway. Another very important feature is the
gufi lifespan, i.e. the time difference in minutes between the time
when the gufi was generated, tracking the flight, and the current
time, i.e. the timestamp at which a prediction is made. Interestingly,
we found that knowing the destination airport is a very valuable
piece of evidence for all airports, possibly because each destination
airport has certain specific type of flights that tend to fly there. Many
interval/average features regarding departures and arrivals such
as “exp_deps_30min”, which encodes the total number of flights ex-
pected to depart within the next 30 minutes, “dep_taxi_30hr”, which
represents the average time taken by flights to taxi from the gate
to the runway in the past 30 hours, and “standtime_30hr”, which is
the average time between when flights started to be tracked and
their pushback time during the last 30 hours, are also among the
most important features. These features capture the busyness of
the analyzed airport, which can affect the pushback time.

Among the aircraft and airline features, we observed that the
aircraft type and the carrier are very valuable. The aircraft type
indirectly captures the size, style, and other aircraft characteristics,
thereby providing useful information to estimate the time required
for an airplane to become airborne. Temporal information such
as month, hour, and day were also found to be fairly important.
The observation that “airport”, i.e. the departure airport, does not
appear at all in Fig. 2, is consistent with the fact that the model
corresponding to the feature graph in Fig. 2 was trained using data
from KATL only, i.e. over a dataset in which the airport feature has
only a single value, namely KATL. As a result, the total gain of the
airport feature is 0 for this and all other local models.

4.2.3 Efficiency Analysis. We utilized Microsoft Azure cloud com-
puting for data preprocessing and model training. The runtimes
reported below were achieved with a VM running x64 Ubuntu
Server v20.04 on an Intel Xeon Platinum CPU with 44 cores and 352
GB of RAM. Execution of the entire model construction pipeline
on the training dataset took roughly 4 hours on average, namely 3
hours for data preprocessing and feature extraction, and roughly 40
minutes for fitting encoders and training LightGBM models. Infer-
ence duration is dependent on the number of instances. Classifying
2,042,723 instances takes around 20 minutes. Memory usage during
all these operations is quite high. Ideally, a computer with a mini-
mum of 128 gigabytes of RAM should be used; using less could lead
to slower execution or possibly a failure to execute.

While they are at par in terms of utility, the “local model” ap-
proach is significantly more computationally efficient than the
“global model” approach. Indeed, the models in the local model ap-
proach can be fit simultaneously in parallel on multiple machines,
leading to higher training modality and fault-tolerance. Further-
more, the local model approach has significantly higher memory
efficiency, because fitting a single model per airport requires hold-
ing in memory only one airport dataset at a time.

4.2.4 Results on Competition Leaderboard. We merged the valida-
tion set from Sec. 2 with the training data and retrained the local
LightGBM models on this combined data, resulting in an MAE
of 11.1046 on the competition leaderboard (4th place). The MAEs
obtained by the teams in the 1st, 2nd, and 3rd positions were (respec-
tively): 10.6734, 10.7283, and 11.0543. Based on available high-level
descriptions, all these approaches utilize decision tree ensembles
similar to our solution.9

5 CONCLUSION AND FUTUREWORK
In this paper we presented a gradient boosting decision tree model
approach to predict the number of minutes until the pushback of a
flight. Our main findings are that (1) more accurate predictions can
be made by integrating information from many different sources,
including weather, airport, and airline information, (2) the mean
absolute errors of predictions made by training a local model per
airport are at par with the errors of one global model trained across
all airports, and (3) training local models is computationally more
efficient. Each of our models is trained on data from many airlines.
A roadblock regarding the latter is that some valuable information
collected by airlines that is relevant to pushback time, like the num-
ber of passengers that have checked in for a flight or the number
of bags that have been loaded onto a plane, may in practice be too
sensitive to share with other entities for model training. An im-
portant next step would be designing a federated learning solution
that will enable airlines to contribute this valuable information in
a privacy-preserving manner.

6 ACKNOWLEDGMENTS
The authors would like to thank NASA and the team at DrivenData
for hosting an interesting competition. They would also like to
thank Sikha Pentyala and Anderson Nascimento for their help and
advice during model development and evaluation, and Microsoft
for the generous donation of cloud computing credits through the
UW Azure Cloud Computing Credits for Research program.

REFERENCES
[1] Flight Information Exchange Model (FIXM). 2014. Globally Unique Flight Identifier

(GUFI) Form and Content. https://www.fixm.aero/documents/GUFI%20Format%
20v2%201_Final.pdf.

[2] Shawn M Gorman. 2019. Fuser and Fuser in the Cloud. In NASA Airspace Technol-
ogy Demonstration 2 (ATD-2) Industry Workshop.

[3] Guolin Ke, Qi Meng, Thomas Finley, TaifengWang, Wei Chen, Weidong Ma, Qiwei
Ye, and Tie-Yan Liu. 2017. LightGBM: A highly efficient gradient boosting decision
tree. Advances in Neural Information Processing Systems 30 (2017).

[4] Kerim Kiliç and Jose M. Sallan. 2023. Study of Delay Prediction in the US Airport
Network. Aerospace 10, 4 (2023).

[5] Hanbong Lee, Jeremy Coupe, and Yoon C Jung. 2019. Prediction of pushback times
and ramp taxi times for departures at Charlotte airport. In AIAA Aviation 2019
Forum.

[6] Hanbong Lee, Waqar Malik, and Yoon C Jung. 2016. Taxi-out time prediction for
departures at Charlotte airport using machine learning techniques. In 16th AIAA
Aviation Technology, Integration, and Operations Conference.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

9https://drivendata.co/blog/airport-pushback-finalists

https://www.fixm.aero/documents/GUFI%20Format%20v2%201_Final.pdf
https://www.fixm.aero/documents/GUFI%20Format%20v2%201_Final.pdf
https://drivendata.co/blog/airport-pushback-finalists

	Abstract
	1 Introduction
	2 Data and Problem Description
	3 Method
	3.1 System Overview
	3.2 Feature Overview

	4 Results
	4.1 Experimental setup
	4.2 Utility and Efficiency Analysis

	5 Conclusion and Future Work
	6 Acknowledgments
	References

