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ABSTRACT
Transformers have achieved great success in the task of time se-
ries long sequence forecasting (TLSF) in recent years. However,
existing research has pointed out that over-parameterized deep
learning models are in favor of low frequency and could be difficult
to capture high-frequency information for regression fitting task,
named spectral bias. Yet the effect of such bias on TLSF problem,
an auto-regressive problem with a long forecasting length, has not
been explored. In this work, we take the first step to investigate
the spectral bias issues in TLSF task for state-of-the-art models.
Specifically, we carefully examine three different existing time se-
ries Transformers on the task of TLSF with both synthetic and
real-world data and visualize their behavior on spectrum. We show
that spectral bias exists in the problem of TLSF. Surprisingly, our
experiment demonstrated that the model bias behavior, whether
it favors at high or low frequencies, is heavily influenced by the
model design of the individual Transformer.
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1 INTRODUCTION
Time series long sequence forecasting (TLSF) is one of the most
important problems in the field of time series data mining and
it has wide applications in different domain such as stock price
forecasting [7], traffic flow[1, 4], and electricity consumption [9, 16].
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In those applications, it is crucial to have precise and high-resolution
automated time series forecasting. For example,

• In the financial market, accurate stock forecasting can be
very useful for companies and investors, leading to better
long-term financial decisions;

• Forecasting the flow of city crowds would help the govern-
ment plan ahead for city infrastructure and manage public
safety;

• Accurate electricity consumption forecasting provides nec-
essary guidance on planning and allocating energy and re-
sources to small households ahead of the time.

Meanwhile, deep neural network achieves remarkable success in
time series forecasting. Compared to traditional algorithms, deep
learning-based methods, such as Long Short-Term Memory unit
(LSTM) [5], outperforms traditional method such as ARIMA due
to the ability to capture nonlinear behavior [10]. However, these
methods have limited capability on predicting long sequence [15].
Recently, various Transformer-based methods were introduced
to TLSF taks due to the success of the original Transformer in
capturing long-term dependencies in text translation and significant
advance the state-of-the-art TLSF performance.

Despite the great performance, recent research pointed out spec-
tral bias issues in existing over-parameter deep learning models.
Such bias could cause the models to strongly favor certain type of
characteristics in the data, while causing unstable performance or
even failure in capturing the true relation between the input and
output of the data [12]. In this work, we would like to systemat-
ically investigate and evaluate the spectral bias on Transformer
TLSF models. While the original spectral bias is only on classical
regression problem, we focus on auto-regression with a long se-
quence output. In addition, our evaluation focus on time series
Transformers while previous work use CNN model. In summary,
our key contributions are as follows:

• We take the first step to invest spectral bias in a new problem,
which is time series long sequence forecasting problem, with
a auto-regressive setting.

• Through carefully examining three different type of existing
Transformer models on the task of time series long-sequence
forecasting, We show that the spectral bias exists in TLSF
problem in both synthetic data and real-world data.

• We observe empirically that the bias behavior occurring at
high or low frequencies is heavily influenced by the model
design of the individual Transformer.
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2 RELATEDWORK
Time Series Transformers. Recently, Transformer [11] has been pro-
posedwith the computation relying entirely on performing pairwise
attention on data sequences. It has good parallel capability, and can
better model long-term dependencies existed in the sequences. Li
et al. [6] proposed Log-Sparse Transformer to alleviate the mem-
ory cost problem caused by full attention between layers. Zhou
et al. [14] proposed Informer by learning the location of attention
based on a max-mean criterion. Wu et al. [13] proposed Auto-
former by integrating a decomposition with an auto-correlation
mechanism to replace the self-attention module in Transformer.
Zhou et al. [15] proposed FEDformer by introducing Fourier and
Wavelet-based attention module to integrate frequency informa-
tion. Although these methods improve the performance of TLSF
problem, there is inadequate comprehensive study on the behavior
of current models in spectrum performance.
Bias in Deep Learning Models. While the over-parameterized deep
learning models have achieved remarkable success in different do-
mains, recent research shows that these models tend to capture
superficial features and bias towards some easy-to-learn features.
Most existing studies focus on image domain tasks such as image
classification and object recognition. Geirhos et al. [3] pointed out
convolutional neural networks (CNN) bias towards capturing tex-
ture rather than shape to perform image classification. Wang et
al. [12] discovered color bias in deep learning models and used
gray-level information to improve the robustness. Choi et al. [2]
found context bias in activity classification in image data. All of
the above work rely on some image specific features and they are
not designed for evaluating bias in time series. The most closely
related work to our task is spectral bias by Rahaman et al. [8].
They used Fourier analysis to analyze the result of deep learning
models for regression, and found that these models are biased to-
wards low frequency functions. However, their problem is different
from our problem in this paper. Firstly, TLSF is a sequence-to-
sequence (Seq2seq) auto-regression problem, whereas they only
consider fitting a non-linear function to the input. Moreover, they
are working on multilayer perceptron (MLP) and we are working on
Transformer-based forecasting models, which has more parameters
and allow more non-linear fitting.

To the best of our knowledge, there is no study under the auto-
regression setting in time series data. It is unclear whether the
spectral behavior for transformer-based forecasting models would
have the same property as regular function fitting.

3 PRELIMINARIES
In this section, we describe fundamental concepts related to time
series and our problem statement.

3.1 Definitions
Univariate Time Series 𝑋 = [𝑥1, ..., 𝑥𝑛] is a set of real-valued
observations ordered by discrete time step 𝑗 where 𝑗 = 1, 2, · · · , 𝑛.
Multivariate Time Series 𝑋 = 𝑋 1, 𝑋 2, ..., 𝑋𝐷 is a set of 𝐷 co-
evolving single dimensional real-valued time series 𝑋𝑖 .
Sliding Window 𝑋𝑡,𝐿 of a multivariate time series 𝑋 is a contigu-
ous set of points in each dimension of time series 𝑋 starting from
position 𝑡 with length 𝐿, where 1 ≤ 𝑝 ≤ 𝑇 − 𝐿 + 1. Typically 𝐿 ≤ 𝑛.

Table 1: Table 1: Notation for this paper

Notation Discription

𝑋 𝑖
𝑡 𝑖𝑡ℎ dimension of time series vector at time step 𝑡

𝑛 Length of time series 𝑋
𝐷 Number of dimension of time series 𝑋
𝐿𝑖𝑛 input length of time series 𝑋
𝐿𝑜𝑢𝑡 prediction length of time series 𝑋
𝑋𝑡,𝐿 Sliding starting at 𝑡 of length 𝐿

3.2 Problem Statement
Time Series Long Sequence Forecasting Given a 𝐷 dimensional
time series 𝑋 at time step 𝑇 , at every time stamp, the task of time
series forecasting will take an input of historical fixed sliding
window of time series segment of length 𝐿𝑖𝑛 , and predict a fixed
future sliding window of time series segment of 𝐿𝑜𝑢𝑡 . Specifically,
we would like to learn a mapping function 𝑓 from R𝐿𝑖𝑛 → R𝐿𝑜𝑢𝑡 ,
such that 𝑓 (𝑋𝑡−𝐿𝑖𝑛+1,𝐿𝑖𝑛 ) = 𝑋𝑡+1,𝐿𝑜𝑢𝑡 . In the problem of TLSF, 𝐿𝑜𝑢𝑡
is typically long up to a few hundred points.

4 PROPOSED EVALUATIONS
4.1 Spectral bias
Next we describe our bias evaluation strategy. Given a forecasting
outcome 𝑦𝑖 produced through model 𝑓 (.) in each epoch, instead
of simply evaluating the performance through difference in time
domain, we evaluate it in the frequency domain. Specifically, fol-
lowing the experiment setting in [8], we first compute energy under
frequency-domain through Fast-Fourier-Transform i.e.:

𝐸 (𝑓 ) = |𝐹𝐹𝑇 (𝑦) |2 (1)

where 𝑦 is the forecasting sequence, 𝑓 indicates the corresponding
frequency, and 𝐸 (.) indicates the corresponding energy.

In this paper, we will evaluate the spectrum difference in two
ways. In the synthetic dataset that we know the ground-truth fre-
quency, 𝑓𝑔𝑡 , our evaluation will be the ratio between actual energy
and the predicted energy:

𝑟𝑎𝑡𝑖𝑜 = 𝐸′ (𝑓𝑔𝑡 )/𝐸 (𝑓𝑔𝑡 ) (2)

where 𝐸′ (𝑓𝑔𝑡 ) is the energy in frequency 𝑓𝑔𝑡 produced by the fore-
casting sequence 𝑦 and 𝐸 (𝑓𝑔𝑡 ) is the actual energy in the ground
truth. Intuitively, to evaluate the performance of forecasting on
spectrum, we wanted to take a look at how the energy of an itera-
tion’s time series forecasting at a specific frequency compares with
the true energy corresponding to the same frequency. This means
that if the ratio is equal to 1, then the prediction is accurate, if the
ratio is greater than one, the prediction is an overestimate, and if
the ratio is less than one, then the prediction is an underestimate.

For the purpose of studying and fully controlling the dataset, we
use both quantitive analysis and real-world case study to demon-
strate our findings. We first run different Transformer models to
get the output, then we visualize the difference between predicted
and actual spectrum in different experiment settings.
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(a) Autoformer (LPF) (b) FEDformer (LPF) (c) Informer (LPF)

(d) Autoformer (HPF) (e) FEDformer (HPF) (f) Informer (HPF)

(g) Autoformer (EPF) (h) FEDformer (EPF) (i) Informer (EPF)

Figure 1: Ratio of prediction’s energy to true energy across the respective epochs for Autoformer, FEDformer and informer
transformers in synthetic data

4.2 Time Series Transformers
We evaluate three recent state-of-the-art time Transformer models
to evaluate their spectral bias:

• Informer [14]. Informer uses a sparse self-attention module
which only updates attention weights on top𝑈 = 𝑙𝑜𝑔(𝐿𝑖𝑛)
max-mean positions.

• Autoformer [13]. Autoformer replaces the self-attention
unit with an auto-correlation mechanism and integrates a
seasonal decomposition component after each auto-correlation
unit. Intuitively, Autoformer considers aligning the peak of
a query and keys together.

• FEDformer [15]. FEDformer performs attention on fre-
quency domain through Fourier transformation andWavelet
transformation. The goal of the frequency attention is to
enhance the learning in high frequency and improve the
overall performance of the model.

5 EXPERIMENTS AND RESULTS
In this section, we evaluate spectrum bias of Autoformer, FED-
former, and Informer models on each of the three cases of synthetic
data. We follow the implementation of FEDformer [15] and use
their default setting for all benchmarks to perform our experiments.
Across all the models, we use two layers of encoder and one layer
of decoder, and set the model embedding size as 512. We use a con-
sistent length across the synthetic and real-world data, the input
sequence length 𝐿𝑖𝑛 is set to 256 and the prediction length 𝐿𝑜𝑢𝑡 is
384. For all our experiments we use Google Colab cloud GPU T4 of
16GB.
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(a) Autoformer (b) FEDformer (c) Informer

Figure 2: Spectrum visualization per initial, first and last epoch for for Autoformer, fedformer, and informer transformers in
real world data

(a) Autoformer (b) FEDFormer (c) Informer

Figure 3: Visualization of last epoch in the Time domain

5.1 Dataset
We evaluate the three Transformer models in both synthetic and
real-world time series. The synthetic time series is generated by:

𝑇 (𝑥) = 𝐴1 sin( 1
2
𝑥 + 𝜋) +𝐴2 sin(2𝑥 − 𝜋) (3)

where we construct the following datasets to cover three different
cases:

• Low-Frequency Priority (LPF): The energy in the low fre-
quency is two times that of the high frequency (i.e. 𝐴1 =

2𝐴2).
• High-Frequency Priority (HPF): The energy in the high fre-
quency is two times that of the low frequency (i.e.𝐴2 = 2𝐴1).

• Equal Frequency Priority (EPF): The energy in both frequen-
cies is equal (i.e. 𝐴1 = 𝐴2).

In addition, we also evaluate spectral bias on ETTh data, which is
a real-world data from an electric power plant in China and is a
common benchmark data in the task of TSLF [14].

5.2 Predicting Energy Performance in Ground
Truth Frequency

We first test the average spectral prediction performance measured
on Eq. 2 with the ground truth high frequency and low frequency on
our three synthetic data. Figure 1 shows the various visualizations of
trend of energy ratios from initial epoch to final epoch for different
Transformer models in different synthetic data. The orange line

represents the predicted ratio of the high ground truth frequency
and the blue line represents the predicted ratio of the low ground
truth frequency.

Figure 1(a-c) illustrate energy ratio graphs of Autoformer, FED-
former and Informer models respectively on low frequency priority
synthetic data. Figure 1(d-f) represent the same evaluation on high
frequency priority data, and figures 1(g-f) represent the result on
the equal frequency priority data. According to the figures, Aut-
oformer fits high-frequency information quite good but fits low
frequency information with much difficultly. FEDformer has similar
observation, but it fits low frequency much better than Autoformer.
Different from Autoformer and FEDformer, Informer, which does
not use auto-regressive characteristic or frequency information, fits
low frequency information easier than high frequency information.
Overall, we found the frequency driven Transformers (Autoformer,
FEDformer) is biased towards high-frequency and Informer is bi-
ased towards low frequency.

5.3 Visualize the Instance Behavior on
Synthetic Data

In this experiment, we visualize the behavior of different Trans-
formers in capturing different spectrum at instance level. We pick
an arbitrary instance of 100 in testing data and plot the spectral
graph for each epoch prediction result until it converges for all
three Transformers, and compare with the ground truth spectrum.
Figure 2 shows our result of spectrum visualization per epoch for
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(a) Autoformer (LPF) (b) FEDformer (LPF) (c) Informer (LPF)

(d) Autoformer (HPF) (e) FEDformer (HPF) (f) Informer (HPF)

(g) Autoformer (EPF) (h) FEDformer (EPF) (i) Informer (EPF)

Figure 4: Spectrum visualization per epoch for Autoformer, FEDformer, and informer transformers in (a-c): LPF synthetic data,
(d-f):HPF synthetic data and (g-i) EPF synthetic data

Autoformer, FEDformer and Informer in low-frequency priority,
high-frequency priority and equal-frequency priority cases. We can
see that Autoformer captures low frequency in a much slower and
less stable fashion compared to FEDformer and Informer. Informer
captures high-frequency information better and faster when high
frequency has higher energy but can be slower in low-frequency pri-
ority case. FEDformer is the best in capturing different frequencies

in this case regardless of the frequency energy. This is not surpris-
ing as the design of FEDformer uses frequency-based attention and
theoretically, should work better in our synthetic data.
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5.4 Case Study in Real-world Data
Figure 2 and Figure 3 show the prediction of an instance by different
Transformer models on time domain and the converted spectrum
graph for ETTh data [14]. We arbitrarily picked an instance at the
first dimension and observed a different result from the synthetic
data. In this instance, Autoformer works well in the first half of the
instance in low frequency, but does not work well in the second half
of the instance in both high frequency and low frequency. We can
see FEDformer performs well in all three major peaks in frequency.
Comparedwith Autoformer, FEDformer has a better power in fitting
high frequency. Meanwhile, we see a bad failure in Informer, which
is still able to capture a good amount of low frequency, but could
barely capture any information in high frequency as shown in
both time and frequency domain figures. In a nutshell, FEDformer
performs the most consistent among all three Transformers, while
Informer is bias towards low frequency and has worst ability to
capture high frequency among all three.

6 CONCLUSION AND FUTUREWORK
In this work, we systematically investigate and evaluate the spectral
bias on three different Transformer TLSF models. We examine the
models in carefully designed synthetic data to compare the spectral
bias, and we provide real-world case study and visualization on the
spectrum. The bias behavior of the model, whether it favors at high
or low frequencies, is heavily influenced by the model design of
the individual Transformer. Our work is a first step in investigating
spectrum bias issues in TLSF task to improve the usability of deep
forecasting models. In the future, we would like to propose new
solutions through new models to mitigate this issue.
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