Results
KDD Cup 2009: Customer relationship prediction
Winners of KDD Cup 2009: Fast Track
- First Place: IBM Research
Ensemble Selection for the KDD Cup Orange Challenge
- First Runner Up: ID Analytics, Inc
KDD Cup Fast Scoring on a Large Database
- Second Runner Up: Old dogs with new tricks (David Slate, Peter W. Frey)
Winners of KDD Cup 2009: Slow Track
- First Place: University of Melbourne
University of Melbourne entry
- First Runner Up: Financial Engineering Group, Inc. Japan
Stochastic Gradient Boosting
- Second Runner Up: National Taiwan University, Computer Science and Information Engineering
Fast Scoring on a Large Database using regularized maximum entropy model, categorical/numerical balanced AdaBoost and selective Naive Bayes
Full Results: Fast Track
Rank |
Team Name |
Method |
AUC |
Churn |
Appetency |
Upselling |
Score |
1 |
IBM Research |
Final Submission |
0.7611 |
0.8830 |
0.9038 |
0.8493 |
2 |
ID Analytics, Inc |
DT |
0.7565 |
0.8724 |
0.9056 |
0.8448 |
3 |
Old dogs with new tricks |
Our own method |
0.7541 |
0.8740 |
0.9050 |
0.8443 |
4 |
Crusaders |
Joint Score Technique |
0.7569 |
0.8688 |
0.9034 |
0.8430 |
5 |
Financial Engineering Group, Inc. Japan |
boosting |
0.7498 |
0.8732 |
0.9057 |
0.8429 |
6 |
LatentView Analytics |
Boosting |
0.7579 |
0.8670 |
0.9034 |
0.8428 |
7 |
Data Mining |
Logistic |
0.7580 |
0.8659 |
0.9034 |
0.8424 |
8 |
StatConsulting (K.Ciesielski, M.Sapinski, M.Tafil) |
AdvancedMiner |
0.7544 |
0.8723 |
0.8997 |
0.8421 |
9 |
Sigma |
Decision Tree Algo |
0.7568 |
0.8644 |
0.9034 |
0.8415 |
10 |
Analytics |
CART |
0.7564 |
0.8644 |
0.9034 |
0.8414 |
11 |
Ming Li & Yuwei Zhang |
me |
0.7507 |
0.8683 |
0.9050 |
0.8413 |
12 |
Hungarian Academy of Sciences |
fri4 |
0.7496 |
0.8683 |
0.9042 |
0.8407 |
13 |
Oldham Athletic Reserves |
tiberius10 |
0.7492 |
0.8699 |
0.9026 |
0.8406 |
14 |
Swetha |
Logistic |
0.7550 |
0.8659 |
0.8996 |
0.8401 |
15 |
VladN |
vnf8c |
0.7415 |
0.8692 |
0.9012 |
0.8373 |
16 |
VADIS |
Bagging |
0.7474 |
0.8631 |
0.8994 |
0.8366 |
17 |
brendano |
random forests (res11) |
0.7468 |
0.8627 |
0.9003 |
0.8366 |
18 |
commendo |
1 before noon |
0.7381 |
0.8693 |
0.8988 |
0.8354 |
19 |
FEG CTeam |
Boosting |
0.7389 |
0.8616 |
0.9011 |
0.8338 |
20 |
Vadis Team 2 |
Best final |
0.7442 |
0.8568 |
0.8996 |
0.8335 |
21 |
National Taiwan University, Computer Science and Information Engineering |
all2 |
0.7428 |
0.8679 |
0.8890 |
0.8332 |
22 |
Kranf |
TIM |
0.7463 |
0.8478 |
0.8980 |
0.8307 |
23 |
Neo Metrics |
final2 |
0.7454 |
0.8449 |
0.8994 |
0.8299 |
24 |
ooo |
10-3 |
0.7427 |
0.8520 |
0.8920 |
0.8289 |
25 |
TonyM |
mymethod5 |
0.7397 |
0.8481 |
0.8988 |
0.8289 |
26 |
AIIALAB |
ensemble |
0.7413 |
0.8458 |
0.8969 |
0.8280 |
27 |
Uni Melb |
hfinal |
0.7087 |
0.8669 |
0.8996 |
0.8251 |
28 |
Christian Colot |
My GoldMiner |
0.7183 |
0.8577 |
0.8958 |
0.8240 |
29 |
Céline Theeuws |
final |
0.7346 |
0.8476 |
0.8835 |
0.8219 |
30 |
m&m |
final test |
0.7218 |
0.8423 |
0.8924 |
0.8189 |
31 |
Predictive Analytics |
Logistic |
0.7131 |
0.8336 |
0.8917 |
0.8128 |
32 |
DKW |
NN / Logistic Regression on Laptop |
0.6980 |
0.8449 |
0.8928 |
0.8119 |
33 |
NICAL |
Dys |
0.7108 |
0.8461 |
0.8707 |
0.8092 |
34 |
UW |
eq+uneq |
0.6804 |
0.8531 |
0.8815 |
0.8050 |
35 |
Prem Swaroop |
thmdkd4 |
0.6972 |
0.8384 |
0.8794 |
0.8050 |
36 |
Dr. Bunsen Honeydew |
submission #004 |
0.7048 |
0.8235 |
0.8760 |
0.8015 |
37 |
dodio |
L2 |
0.7179 |
0.8474 |
0.8356 |
0.8003 |
38 |
FEG D TEAM |
mix2 |
0.6997 |
0.8139 |
0.8824 |
0.7987 |
39 |
minos |
rdf |
0.6828 |
0.8233 |
0.8698 |
0.7920 |
40 |
M |
Release1 |
0.7289 |
|