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ABSTRACT 
Microarrays are a powerful experimental platform, allowing 
simultaneous studies of gene expression for thousands of genes 
under different experimental conditions. However there is much 
biological variability induced throughout the experimental process 
that can obscure the biological signals of interest. As such, the 
need for experimental design, replication and statistical rigor are 
now widely recognized. Statistical hypothesis testing has become 
the accepted differential expression analysis approach and many 
classification and prediction methods used in class discovery and 
class prediction now incorporate stochastic modeling components.  
 
This paper provides a review of statistical analysis approaches to 
the analysis of data from microarray experiments. This includes 
discussion of experimental design, data management, pre-
processing, differential expression, clustering and class prediction, 
reporting and annotation. The review is illustrated with the 
analysis of an experiment with 3 experimental conditions using 
the Affymetrix murine chip mgu74av2; and with descriptions of 
available functionality in the statistical analysis software S-PLUS 
and its associated module for microarray analysis, 
S+ArrayAnalyzer.  
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INTRODUCTION 
The development and refinement of high throughput microarray 
assays for RNA transcripts has stimulated the statistical and 
computational communities in many ways. High-throughput runs 
somewhat counter to high-precision, and there are many sources 
of variability in microarray data. Dealing with this variability in a 
systematic and statistically rigorous manner is crucial in providing 
biologically-valid inference. Sources of unwanted variability 
include microarray manufacturing, sample mRNA preparation, 
hybridization, scanning and signal extraction.  
 
Microarray data have many inferential challenges, most obviously 
the number of genes/probes for which an assessment of 
(differential) expression must be made – with so many tests, the 
chance of false positives is high and must be managed. Indeed, the 
many inferential challenges of high throughput data from 
microarrays, mass spectrometry, nuclear magnetic resonance 
spectroscopy and two-dimensional gel electrophoresis have led to 
the recent development of many new statistics and computational 
methods. Key statistical areas are (a) identification of 
differentially expressed genes across experimental conditions; and 
(b) discovery and prediction of classes of experimental samples.  
 
This paper provides a review the microarray data analysis pipeline 
with an emphasis on these areas, to highlight key statistical issues 

and to suggest appropriate methods and models for common 
analytic situations. A running example is provided based on data 
from a mouse immune response experiment as analyzed by Jain et 
al. [1] to identify differentially expressed genes in three 
populations of immune exposure: naïve (no exposure), 48 hour 
activated, and CD8+ T-cell clone D4 (longterm mild exposure).  
The example illustrates some of the analysis steps and is presented 
in the context of the statistical analysis software S-PLUS and its 
associated module for microarray analysis, S+ArrayAnalyzer. 
 

THE MICROARRAY ANALYSIS PIPELINE 
At a high-level, the microarray analysis pipeline follows the 
standard analysis pipeline viz. experimental design, data access, 
data preparation, modeling, reporting, deployment. Specific 
components and issues include: 
1. Experimental Design  

•  Sample size estimation 
•  Assignment of experimental conditions to arrays – 

particularly important in 2-channel arrays, which are 
naturally incomplete block designs with blocks of size 2.  

2.  Data Access  
•  Database and LIMS access; dealing with (sometimes 

proprietary/binary) specific file formats.  
3. Pre-processing  

•  Image analysis – registration, segmentation, estimation of 
signal and background; 

•  Gene filtering e.g. removal of genes that show no expression 
at any experimental condition; 

•  QA of chips and data within chips; 
•  Background and non-specific binding adjustment; 
•  Probe level analysis of arrays with more than one probe per 

transcript e.g. Affymetrix; 
•  Normalization within and between arrays. 

4. Analysis and modeling 
•  Identification of genes that are differentially expressed 

across experimental conditions – methods for two-level and 
multi-level designs; 

•  Clustering of samples and genes (class discovery); 
•  Classification of samples (class prediction); 
•  Validation and use of data from related experiments. 

5. Reporting 
•  Analysis of function for identified genes – e.g. assessment of 

gene ontology categories that are over- (and under-) 
represented in the differentially expressed genes identified 

•  Annotation of tabular and graphical analysis summaries  
6. Deployment 

•  Making the analyses available to the biologist/scientist user 
community 
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EXPERIMENTAL DESIGN AND DATA 
ACCESS 
Microarrays are used in many different experimental scenarios. 
Two broad inferential classes are (a) identification of 
differentially expressed genes across specific experimental 
conditions of interest, and (b) exploratory studies involving many 
experimental samples.  
 
Examples of (a) include many functional genomics studies 
exploring cellular pathways and events under experimental 
conditions of interest e.g. comparisons of wild-type v knockouts, 
drug candidates and known potent/toxic agents, state/tissue 
comparisons (e.g. tumor v non-tumor). Experiments typically 
include two experimental conditions and sometimes extend to 
time course (progression) and/or multi-factorial conditions.  
 
Examples of (b) include studies of disease taxonomy and 
genotype-phenotype relationships i.e. class discovery and class 
prediction studies. Applications include developing mRNA 
signatures for tumors (and resulting risk stratification, survival 
outcomes prediction and personalized diagnosis/treatment); 
profiling of chemotherapeutic (and potentially toxic) drugs; and 
obtaining insight into molecular mechanisms of disease and drugs.  
 
A key experimental design question, particularly in the case of (a) 
is “how many replicate chips?”  Pan et al. [2] provide some 
insight into this as well as S-PLUS code for estimating sample 
sizes. With larger experimental designs, e.g. factorial designs and 
time-course experiments, less replication is needed provided there 
is an adequate number of total chips in the experiment. Two-
channel studies can be set up as incomplete block designs with 
blocks of size 2, and linear models including terms for the channel 
within chip effect are a natural approach [3]. Dye-swap designs, 
where treatments are run on different channels of the same chip 
and again with the channels reversed on another chip, help 
balance/ orthogonalize the dye/channel effect. Loop designs 
correspond to (balanced) incomplete block designs and are 
efficient in that sense. Reference designs are useful in that they 
allow additional runs to be added to the experiment, but they are 
inefficient [4] since they involve the use of the reference sample 
on half of the observations; also the treatments are confounded 
with dyes in this design. Saturated designs have potential for 
larger experiments but have not been explored for microarray 
applications.  
 
Accessing and managing microarray data is an important 
convenience in facilitating data analysis. S+ArrayAnalyzer 
includes the Affymetrix API’s, which makes S+ArrayAnalyzer 
fully compatible with all Affymetrix microarray systems, current 
and future, including the new GeneChip® Operating Software 
(GCOS) output and the entire installed base of Affymetrix 
instruments and scanners. Affymetrix data are read-in through 
point-and-click/browse-files or through a single file that specifies 
location of files for import (Figure 1). Such methods are similarly 
available for cDNA data.  
 
Searching and importing data from databases is also readily 
accomplished. S-PLUS/S+ArrayAnalyzer includes native driver 
access to Oracle, SQL-Server and Sybase; and simple user-
interfaces for searching databases are available. For example, the 
Affymetrix AADM schema is easily searched to assemble chips 

for analysis. Other databases e.g. BioDiscovery GeneSight, Iobion 
Gene Traffic, and Rosetta Resolver are also easily accessed. The 
simple access to data files and databases provides convenience in 
assembling data for analysis and avoids many otherwise manual 
data import steps and the management of additional and redundant 
file types. The format of microarray file types will likely change 
in the future, and by abstracting access through API’s, seamless 
access for all future systems using S+ArrayAnalyzer is assured.  
 

 

Figure 1. Reading in Affymetrix (binary) CEL data. Mouse 
immune response study: one-way design, 1 factor, 3 levels, 3 
replicates. Files can be loaded individually by point-and-click; 
or as a group using the Read Design option in which case file 
locations are supplied as a text file. 
 

PRE-PROCESSING 
There are four main aspects of pre-processing microarray data viz. 
adjustment for background, adjustment for non-specific binding 
(e.g. mismatch in Affymetrix GeneChips), normalization, and 
probe-level summary for chips with multiple probes per transcript 
(Affymetrix GeneChips).  
 
The goal of adjusting for background or non-specific binding is to 
obtain accurate estimates of signal intensities. Assuming X and B 
are unbiased and precise estimates of total and background 
intensity, S = X - B will be an accurate and precise estimate of 
signal. Note that variance of S is the variance of X + the variance 
of B. One problem that often arises is that estimates of B are not 
accurate or precise. For example, Yang et al. [5] suggest 
background estimates from many image analysis packages are 
unreliable. Also, the subtraction of mismatch (MM) intensities 
from perfect match (PM) intensities at the probe level in the 
MAS5 analysis of Affymetrix probe-level data [6] typically 
results in 30% of the PM-MM differences being less than zero. 
This implies that the MM intensities are estimated with more error 
than the PM intensities; and/or that when both the PM and MM 
intensity measure is low, that the errors are on par with the signal. 
Thus, while subtraction of background is desirable in the goal of 
producing accurate estimates of signal intensity, precision may be 
compromised in this operation, particularly when overall 
expression intensities are low. This may be overcome by using 
better estimates of background e.g. median background in two-
channel chips and global MM estimates in Affymetrix chips [7]. 
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Negative and very small estimates of background-adjusted signal 
intensities are nonetheless problematic and require careful 
handling in downstream analyses.  
 
In two-channel arrays, the main pre-processing required is 
normalization within slides for balancing intensities between 
channels/dyes. The standard method emerging it to normalize as a 
function of expression intensity using a smooth function of 
intensity e.g. the loess() function in S-PLUS [8]. This 
approach may also be used to remove spatial effects of print-tips 
by fitting a separate loess() function for each print-tip.  
In the Affymetrix system, each gene is represented by 11-20 PM 
and MM pairs of probes, each probing a different region of the 
mRNA transcript, typically within 600 base pairs of the 3’ end. In 
the Affymetrix MAS5 software system, these 11-20 data pairs are 
combined into a single value per gene by adjusting for 
background, subtracting MM from PM within each (PM, MM) 
pair, normalizing chips within an experiment by a simple location 
adjustment that aligns within-chip means, and combining the PM-
MM differences within probe pair sets using a Tukey biweight 
function that downweights PM-MM values according to their 
distance from the median(PM-MM) within the probe pair set.  
 
Many researchers have developed alternatives to the MAS5 
approach. Of note are the methods of Li and Wong [9], Irizarry et 
al. [10], Zhang et al. [11] and Wu et al. [7,12]. Li and Wong [9] 
provide a model-based expression index (MBEI) via estimating 
and removing a probe effect using a multiplicative model, and 
normalizing based on genes that don’t vary much across chips 
within an experiment. Irizarry et al. [10] model PM intensity as a 
sum of exponential and Gaussian distributions for signal and 
background respectively, and use a quantile normalization [13] 
and a log-scale expression effect plus probe effect model that they 
fit robustly (median polish) to define the robust multi-array 
analysis (RMA) expression estimate for each gene. Zhang et al. 
[11] propose a stacking energy, positional-dependent-nearest-
neighbor (PDNN) model for the RNA/DNA duplex. This includes 
terms for the sequence of nearest neighbors (adjacent two bases) 
and the position of these nucleotide pairs. Wu et al. [7] describe 
an algorithm similar to RMA, but incorporating the MM using a 
model based on GC content (GC-RMA). Wu et al. [12] propose a 
unified physical/stochastic model, incorporating background and 
non-specific binding, using physical aspects of the Zhang et al. 
[11] model and a non-specific binding model of Naef and 
Magnasco [14], in a stochastic framework. The performance of 
the physical models [11,12] in practical situations is unclear at 
this point.  
 
RMA, MBEI and MAS5 models are all implemented in 
S+ArrayAnalyzer (Figure 2). The success of the probe-level 
analysis and normalization can be assessed from diagnostic plots 
e.g. the MvA plot (Figure 3), and boxplots showing distribution 
summaries for each chip.  
 
MAS5 provides an accurate summary, incorporating background 
and MM corrections. The drawback is that MM subtraction is 
done within each probe pair and variability in MM is high, 
resulting in approximately 30% of such subtractions being 
negative. This is ameliorated somewhat by the Tukey biweight 
algorithm used to combine the differences; and the resulting 
expression measure is accurate, albeit somewhat variable for low 
expression values. Conversely, RMA provides precise summary 

expression measures, with the drawback that such precision is 
obtained at the expense of some accuracy, particularly for low 
expression values. Also, the somewhat aggressive quantile 
normalization method should be applied with care, since it may 
wash out differential expression when applied across all 
experimental conditions, especially if a large number of genes 
vary across experimental conditions. The S+ArrayAnalyzer GUI 
allows RMA with and without normalization; normalization can 
be done within experimental conditions, and results of probe-level 
analyses can be simply merged. MBEI is a nice model 
conceptually but suffers from the same bias issues as RMA and 
requires many chips per experimental condition for estimation of 
the model-based index. 
 

 

Figure 2. Probe level analysis of Affymetrix data; RMA 
Composite was chosen in this analysis. 
 

 

Figure 3. MvA plot showing results of RMA analysis for the 
MD4 experimental condition. Note y-axis scale is small, -0.6 to 
0.6, and RMA has resulted in tight agreement between 
replicates. 
 
The physical/stochastic model combinations hold promise in 
obtaining estimates of expression for individual genes that are 
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both accurate and precise. Once verified in practical situations, 
these models will be included in S+ArrayAnalyzer. 
 

DIFFERENTIAL EXPRESSION 
A key goal of microarray experiments is to identify genes that are 
differentially expressed while keeping the probability of false 
discoveries acceptably low. From a statistical perspective, the first 
part of this involves minimizing false negatives or maximizing 
power of statistical test, and the second part minimizing false 
positives.  
 
Microarray data are often assessed as fold-changes between 
experimental conditions. While this scale has interpretive value, 
inference based solely on fold-change is misleading because error 
variability for each gene is heterogeneous under different 
biological conditions and intensity ranges.  
 
With two experimental conditions, differential expression tests 
within genes are an example of the most basic statistical test – the 
two-sample comparison. Standard statistical approaches include 
the t-test and the Wilcoxon test. These approaches require a 
substantive number of replicates, since variances are much harder 
to estimate than means. Depending on the nature of the 
experiment, 6 or more replicates per experimental condition may 
be needed for a reliable estimate of within-gene error to be 
constructed [2]. When many replicates are available, permutation 
versions of the null distribution can be calculated by shuffling the 
experimental condition labels and calculating the test statistic for 
each permutation. Note that the significance cutoffs obtained from 
a permutation distribution are asymmetric and this may be 
biologically meaningful in that there is no reason to think that the 
cutoffs for up- and down-regulation would be symmetric.  
 
The usual t-statistic is a signal-to-noise ratio: 

tg = (Xg1 – Xg2) / se(Xg1 – Xg2) 
where Xgi, i = 1; 2, is the mean intensity (log2 scale) of the 
i-th experimental condition, and se( ) denotes a pooled 
standard error function within gene g and between 
conditions 1 and 2. We conclude differential expression if 
the observed tg for a given gene is greater than expected for the 
appropriate t-distribution or permutation distribution. A summary 
of multiple hypothesis testing methods in the context of 
microarray data analysis is given in [15]. 
 
Estimation of the pooled standard error is a key issue. While a 
large number of replicates is desirable from a statistical 
perspective, microarrays can be expensive, and target RNA 
sample availability is often limited. This results in some 
experiments being performed with a limited number of replicates. 
In this case, within-gene estimates of variability do not provide a 
reliable hypothesis testing framework. For example, a gene may 
have very similar differential expression values in duplicate 
experiments by chance alone. This can lead to inflated signal-to-
noise ratios for genes with low but similar expression values.  
 
As such, a number of statistical hypothesis tests have been 
developed that provide more reliable estimate of the standard 
error for comparisons of expression between experimental 
conditions by borrowing strength from among the genes. These 
can be broadly grouped into two classes: (a) variance function and 

transformation methods, and (b) error fudge factors and empirical 
Bayes methods.  
 
Variance function methods typically model the variance of 
expression for a gene within an experimental condition as a 
function of the mean expression for that gene [16-19]. Of note are 
the methods of Durbin et al. [16] and Huber et al. [17] who 
propose a generalized log transformation and corresponding two 
parameter variance function; and Jain et al. [1] who propose a 
non-parametric variance function, estimated by pooling variance 
estimates within bins of mean intensity, and smoothing the 
variance function using the loess() function in S-PLUS.  
 

 
 
Figure 4. Differential expression using the LPE test (Jain et al. 
[1]) with Bonferroni FWER control. 
 
Empirical Bayes methods include those of Efron et al. [19], Baldi 
and Long [20], Newton et al. [21] and Lönnstedt and Speed [22]. 
Lönnstedt and Speed [22] shrink the within-gene variance 
estimate towards an estimate including more genes, and construct 
signal-to-noise ratios using the shrunken variance. This is similar 
to the method of Tusher et al. [23] who include a fudge factor in 
the denominator of the signal-to-noise ratio.   
 
For more than two experimental conditions, ANOVA and mixed 
effect models can be used effectively [24-26]. In the case of 
cDNA data, Wolfinger at al [25] suggest fitting 2 models: a 
normalization model fit to all the data, followed by a gene 
expression model fit to each gene separately.  

log2(y i j g ) = µ + Ai + T j + (AT) i j + E i jg     (1) 

R i j k g = µ g + T j g + Sk g  + Ai j g + E i j k g     (2) 
 
Model (1) is the normalization model, where i, j and g are indices 
for arrays, treatments and genes respectively. Arrays are 
considered as a random effect and an additional (random) effect 
for arrays within dyes is sometimes needed. 
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Figure 5. Estimated LPE variance functions for time 0 and 48 
hours on RMA-summarized expression data. 
 
The term (AT) models the (random) channel effect. Model (2) is 
the gene expression model, fit to the residuals, R, from model (1). 
The term S models the (random) spot effect. Kerr et al [24] fit 
similar models and assume all effects are fixed.  
 
For Affymetrix data, Chu et al. [27] formulate a similar pair of 
models fit to the probe level data: 

log2(PM i  j g) = µ + T j + A i j + E i j g     (1) 

R i j k g = µ g + Ti g + P k g  + Ai j g + E i j k g     (2) 
 
Model (1) is the normalization model, where i, j and g are indices 
for denotes arrays, treatments and genes respectively. Model (2) is 
the gene expression model, fit to the residuals, R, from model (1).  
The term P models the (random) probe effect. 
 
The above mixed models provide a flexible modeling framework; 
for example in time course experiments, the treatment effect T can 
be parameterized as contrasts versus baseline or as polynomials. 
One criticism of these models is that the normalization models are 
inadequate in some situations. An alternative approach is to 
normalize first e.g. using loess() for cDNA or quantile 
normalization for Affymetrix data, and to fit the gene expression 
models (2) above to the normalized data.  
 
S+ArrayAnalyzer includes several methods for two sample 
comparisons and multi-sample comparisons including various 
flavors of t-tests and Wilcoxon tests with both distribution and 
permutation-based null distributions. The LPE method [1] is 
particularly suited to experiments with low replication. Additional 
methods for borrowing strength across genes are planned for the 
next release [16, 22]. The ANOVA and mixed effects models are 
readily fit in S-PLUS using lme() and examples of the models 
outlined above are provided with S+ArrayAnalyzer. A new fast 
ANOVA method has been recently developed; this can fit 
ANOVA models to many chips (e.g. 30-100+) and 12,000 genes 
in a few seconds.  
 

No matter what test statistic is used, multiple comparisons are an 
important consideration given the number of genes and tests.  
Dudoit et al. [27] provide an overview in the context of 
microarray experiments. In a single test, one controls the type I 
error and chooses a rejection region that maximizes power (1 – 
type II error) while controlling type I error. In multiple tests, one 
can control the family wise error rate FWER=Pr(V>0), the false 
discovery rate FDR=E(V/R | R>0)*Pr(R>0) or the positive false 
discovery rate pFDR= E(V/R | R>0) where V=number of false 
positives and R=total number of genes declared significantly 
differentially expressed.  
 
The simplest method to control the FWER is the Bonferroni 
method, in which a FWER is chosen and the p-value for a single 
test is multiplied by the number of tests and compared to the 
chosen FWER. In this scenario if the FWER is α, the g individual 
tests (one for each gene) have type I error α/g. The Bonferroni 
procedure is conservative and several step-down procedures (e.g. 
Westfall and Young [30]) have been proposed whereby the 
Bonferroni adjustment is used for the most extreme value of the 
test statistic/p-value for an individual test, and this adjustment is 
stepped down as the p-value becomes less extreme [28-30].  
 
In microarray experiments the number of tests is often very large 
e.g. >10,000 and FWER control may be too strict. Control of FDR 
is a viable alternative. FDR was introduced by Benjamini and 
Hochberg [31] and has recently been extended to pFDR by Storey 
[32] who also introduced the notion of q-values as an error 
measure applying to observed statistics with respect to the pFDR, 
in the same way as the p-value provides this context with respect 
to the type I error and the adjusted p-value with respect to the 
FWER. Storey [32] and Storey and Tibshirani [33] both fix the 
rejection region and estimate the FDR. Reiner et al. [34] describe 
resampling-based methods for controlling FDR.  
 
S+ArrayAnalyzer includes several methods for FWER and FDR 
control for all its multiple testing procedures. These include 
Bonferroni and various step-down FWER control procedures [26-
28], as well as the FDR control procedures of Benjamini and 
Hochberg [29] and Benjamini and Yeketueli [35]. The LPE test 
includes a resampling-based method for controlling FDR [33, 34].  
 
Results from differential expression analysis are typically 
presented as a gene list. This is managed as a dataframe in 
S+ArrayAnalyzer, sorted by adjusted p-values and including 
columns for means of experimental conditions as well as fold 
changes and raw p-values for each contrast between experimental 
conditions. The genelist dataframe is indexed by gene name and 
includes indices for associated metadata and for access to raw 
chip data.  
 
The differential expression analysis is graphically presented as a 
volcano plot (Figure 6). This combines the adjusted p-value (y-
axis) with this fold change (x-axis) and thus provides both 
statistical and biological perspectives. 
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Figure 6. Volcano plot for the 1 df contrast time 0h vs. time 
48h (LPE analysis of RMA-summarized expression data). 
 
 

CLASS DISCOVERY AND CLASS 
PREDICTION 
Cluster analysis has been a standard approach to microarray data 
since the beginnings of microarray technology and is the basis of 
most class discovery efforts. Hierarchical cluster analysis and 
resulting dendrograms represent distances between samples’ 
expression profiles in a visually appealing manner and handle the 
many gene measurements on microarrays in a simple and concise 
manner. Hierarchical cluster analysis applied to genes, similarly 
summarizes and presents the many genes in a visually appealing 
way. Partitioning cluster analysis helps identify candidate 
subgroups within collection of samples. As such, both hierarchical 
and partitioning clustering have been widely used, particularly in 
the area of oncogenomics, in the identification and 
characterization of cancer subtypes.   
 
When clinical data are available e.g. survival times, supervised 
analyses are possible and have been used more recently in class 
prediction studies. However, even when phenotype data are 
available, unsupervised clustering methods are often used to 
identify classes of samples/genes and to then relate these classes 
to the phenotype data.  
 
Class discovery and class prediction studies have much potential 
in providing a molecular basis for tumor classification and more 
personalized treatments based on such classification. Current 
methods for classifying tumors rely on symptoms i.e. 
morphological and clinical variables, and patients with the same 
diagnosis often have very different treatment responses e.g. 
survival times.  Expression intensities from microarrays may be 
used to characterize molecular variations among tumors. This can 
provide a finer and more reliable classification, and facilitate 
identification of marker genes that distinguish sub-classes. This 
more detailed classification can improve the understanding and 
prediction of cancer survival and targeting of treatments (e.g. 
drug, chemotherapy, surgery) to molecular subtypes, thus 
personalizing the cancer treatment. 

Key early work in this area was done by Alizadeh et al. [36], 
Perou et al. [37] and Khan et al. [38]. Alizadeh et al. [36] 
identified subtypes of diffuse large B-cell lymphoma (DLBCL) 
using hierarchical clustering methods and related the subtypes to 
survival data. Perou et al. [37] did a similar study on breast cancer 
samples. Khan et al. [38]. studied small round blue cell tumors 
(SRBCTs) and used a neural network to predict four subtypes of 
SRBCTs. Tibshirani et al. [39] develop a nearest shrunken 
centroid method and applied this successfully to the Khan et al. 
[38] data. This simpler method also provides an intuitive list of 
genes that are used in predicting the classes. Similar, more recent 
studies involving pediatric acute lymphoblastic leukemia, BLBCL 
and breast cancer are presented in [40-42].  
 
Another active area for class prediction methods is in the profiling 
of chemotherapeutic drugs. This involves the typing of new novel 
agents and development of pathway-targeted drugs where the 
microarray experimental data provides insight into the mode of 
drug action. Several systematic profiling studies have been done 
and there is much current proprietary research underway within 
pharmaceutical companies. A review is provided by O’Neill et al. 
[43] and includes work by Dan et al. [44], profiling/typing in cell 
lines: 55 drugs, 39 cancer lines, and Zembutsu et al. [45], 
profiling/typing in xenografts: 85 human cancer xenografts.  
 
While many early cluster analyses of expression data were applied 
to all genes and all samples, this is not advisable from a statistical 
perspective – hierarchical clustering always finds structure, even 
with random noise. We recommend filtering the genes prior to 
clustering e.g. by including only significantly differentially 
expressed genes, genes with a minimum fold-change etc. Also, 
one may cluster other values besides the raw expression values; 
for example in time course experiments one may cluster the time 
contrast coefficients or t-statistics e.g. 1 df contrasts with baseline 
or polynomial time effects.  
 
S+ArrayAnalyzer and S-PLUS include many methods for class 
discovery and class prediction. Cluster analysis methods include 
the library of algorithms described in Kaufman and Rousseeuw 
[46]. The partitioning methods include K-means – kmeans(), 
partitioning around medoids – pam(), the model-based methods 
– Mclust()and EMclust(), and a fuzzy clustering method 
in which probability of membership of each class is estimated – 
fanny(). A method for large datasets, clara(), is also 
included, which is based on pam(). The hierarchical methods 
include agglomerative methods (which start from individual 
points and successively merge clusters until one cluster 
representing the entire dataset remains) and divisive methods 
(which consider the whole dataset and split it until each object is 
separate). The available agglomerative methods are agnes() 
and hclust(). The available divisive methods are diana() 
and mona(). The Mclust() and EMclust() methods assume 
that data are generated from an underlying mixture of Gaussian 
distributions; and provide an estimate of the number of clusters 
using the Bayes information criterion (BIC) for each model 
considered. The Mclust() and EMclust() methods are 
available in the Mclust library (Fraley and Raftery [47]) from  
http://www.stat.washington.edu/fraley/mclust/. The pam() 
method also allows automatic estimation of the number of clusters 
using the average silhouette width for each model considered. Self 
organizing maps [48] are available in the S-PLUS class library.  

SIGKDD Explorations. Volume 5,Issue 2 - Page 43 



 

Class prediction methods available in S-PLUS include all of the 
standard statistical modeling and supervised learning methods e.g. 
regression, discriminant functions, trees (CART and recursive 
partitioning), neural nets, generalized additive models, support 
vector machines. Many of these methods are available in the S-
PLUS libraries MASS and class as described in Venables and 
Ripley [49]. 
 
Graphical summaries of hierarchical cluster analysis of genes and 
samples are provided in Figure 7; and from partitioning cluster 
analysis of the genes in Figures 8-10. 
 

 

Figure 7. Heatmap and dendrogram from hierarchical cluster 
analysis of significant genes from LPE analysis. Samples 
appear from left to right as MD4, M48, M0 in groups of the 3 
replicates. 

 
  
Figure 8. Partitioning cluster analysis (pam) of significant 
genes from 2 d.f. F-test in one-way ANOVA analysis. Principal 
component biplot shows clear separation into 2 major classes. 
 

 
 
Figure 9. Partitioning cluster analysis (pam) of significant 
genes from 2 d.f. F-test in one-way ANOVA analysis. 
Silhouette plot shows excellent 2-class cluster analysis fit. 
 
 

 
 
Figure 10. Partitioning cluster analysis (pam) of significant 
genes from 2 d.f. F-test in one-way ANOVA analysis. Parallel 
coordinates plot shows expression intensity patterns for the 2 
major classes. 
 
 

ANNOTATION 
There is a great deal of annotation metadata available for any 
given gene. Examples include LocusLink, Unigene, chromosome 
number, chromosomal location (cytoband or bp), KEGG pathway 
information and Gene Ontology (GO) categorizations. A 
microarray dataset typically includes a set of known identifiers 
corresponding to the probes/probesets used. These identifiers are 
typically unique for any manufacturer or spotted array system; 
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and can be simply linked to identifiers for the metadata sources, 
so that each probe/probeset on a microarray chip has readily 
available identifiers for looking up metadata information in the 
various annotation databases.  
 
Many online databases (Unigene, LocusLink, GO/Amigo) support 
querying on the URL. S+ArrayAnalyzer includes S-PLUS 
functions that push database identifiers for probes/probesets to 
online databases and open a browser window with the gene 
annotation information displayed. Other sites e.g. Affymetrix GO 
browser, require a list of Affymetrix ID’s to be uploaded. In this 
case S+ArrayAnalyzer has an S-PLUS function that writes the 
relevant IDs to a file that can be uploaded to the Affymetrix GO 
browser. S+ArrayAnalyzer includes libraries with annotation 
identifiers for most common Affymetrix chips e.g. HGU95*, 
HGU133*, HU6800, MGU74*, MOE430*, RGU34*, RAE230*.  
Figure 11 shows results from uploading an identified gene list to 
the Affymetrix GO browser. The uploaded list comprised 11 
genes from the time0 vs. time48 RMA/LPE analysis, filtered with 
fold change > 3 and adjusted p-value < 0.05.  
 

 

Figure 11. Annotation of 11 genes (fold change > 3, adjusted 
p-value < 0.05) using Affymetrix GO browser. 
S+ArrayAnalyzer writes out file that is uploaded to the 
Affymetrix GO browser website. 

There are now several websites and web-based applications that 
merge annotation information from a variety of sources and 
provide annotation services for an uploaded gene list. Of note is 
the Onto-Express family of applications as described by Draghici 
[50] at: http://vortex.cs.wayne.edu/Projects.html.  
 
Figure 12 shows results from uploading an identified gene list to 
the LocusLink website. The uploaded list again comprised the 
same 11 genes, filtered with fold change > 3 and adjusted p-value 
< 0.05. S+ArrayAnalyzer includes functions that query the 
LocusLink and Unigene websites on the URL with a user-defined, 
filtered gene list. S+ArrayAnalyzer also includes functions for 
importing PubMed abstracts into S-PLUS for further analysis.  

The annotation functions referred to above are also simple to 
launch from the S+ArrayAnalyzer command line, given a set of 
gene identifiers gnames: 

 

> #LocusLink 
llnames <- as.numeric(mgu74aLOCUSID[gnames]) 
locuslinkByID(llnames) 
> #Unigene 
accids <- unlist(mgu74aACCNUM[gnames]) 
genbank(accids, disp="browser") 
> #Pubmed 
pmedids < mgu74aPMID[gnames[1]] 
pubmed(pmedids, disp="browser") 
> #GO 
genelist.GOids <- mgu74aGO[gnames] 
browsego(genelist.GOids) 
 

 

Figure 12. Annotation of 11 genes (fold change > 3, adjusted 
p-value < 0.05) using LocusLink website. S+ArrayAnalyzer 
includes functions that query LocusLink, Unigene and other 
annotation web databases, on the URL with a user-defined 
filtered gene list. 

S+ArrayAnalyzer makes it easy to send lists of genes resulting 
from significance testing (e.g. LPE, ANOVA) and/or cluster 
analysis to the various annotation web sites referred to above. 

 

SOFTWARE AND DEPLOYMENT 
S+ArrayAnalyzer is an add-on module to S-PLUS and can be run 
by a single user as part of S-PLUS for Windows or by multiple 
users through a web user interface. S+ArrayAnalyzer includes 
much of the Biconductor functionality (www.bioconductor.org), 
as well as methods developed at Insightful. S+ArrayAnalyzer 
includes a user interface with point and click workflow 
functionality for data management, pre-processing, differential 
expression and clustering as well as tabular and graphical 
reporting and annotation. There is, of course, much functionality 
that is available through S-PLUS scripting that is not exposed in 
the S+ArrayAnalyzer user interface. S+ArrayAnalyzer includes 
several such worked examples in documentation and scripts; and 
through an extensive help system.  
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S+ArrayAnalyzer is simply deployed through a web user interface 
running on Solaris, AIX, Linux and Windows. The web user 
interface is similar to the S-PLUS for Windows interface and 
includes a wizard-style walk through of user-defined options. 
Both the desktop and web-server interfaces are very simply 
customized using S-PLUS functions on the desktop, and 
javascript and related tools on the web implementation. An 
optimal configuration for S+ArrayAnalyzer is a situation with 1-5 
power users using S-PLUS and S+ArrayAnalyzer on the desktop, 
and managing deployment of the web-based S+ArrayAnalyzer to 
a community of scientists.   
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