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ABSTRACT

Microarrays are a powerful experimental platform, alowing
simultaneous studies of gene expression for thousands of genes
under different experimental conditions. However thereis much
biological variability induced throughout the experimental process
that can obscure the biological signals of interest. As such, the
need for experimenta design, replication and statistical rigor are
now widely recognized. Statistical hypothesis testing has become
the accepted differential expression analysis approach and many
classification and prediction methods used in class discovery and
class prediction now incorporate stochastic modeling components.

This paper provides areview of dtatistical analysis approachesto
the analysis of data from microarray experiments. Thisincludes
discussion of experimenta design, data management, pre-
processing, differential expression, clustering and class prediction,
reporting and annotation. Thereview isillustrated with the
analysis of an experiment with 3 experimental conditions using
the Affymetrix murine chip mgu74av2; and with descriptions of
available functionality in the statistical analysis software S-PLUS
and its associated module for microarray analysis,
S+ArrayAnalyzer.
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INTRODUCTION

The devel opment and refinement of high throughput microarray
assays for RNA transcripts has stimulated the statistical and
computational communitiesin many ways. High-throughput runs
somewhat counter to high-precision, and there are many sources
of variability in microarray data. Dealing with this variability ina
systematic and statistically rigorous manner is crucial in providing
biologically-valid inference. Sources of unwanted variability
include microarray manufacturing, sample mRNA preparation,
hybridization, scanning and signal extraction.

Microarray data have many inferential challenges, most obviously
the number of genes/probes for which an assessment of
(differentid) expression must be made — with so many tests, the
chance of false positivesis high and must be managed. Indeed, the
many inferential challenges of high throughput data from
microarrays, mass spectrometry, nuclear magnetic resonance
spectroscopy and two-dimensional gel € ectrophoresis have led to
the recent devel opment of many new statistics and computational
methods. Key statistica areas are (a) identification of
differentially expressed genes across experimental conditions; and
(b) discovery and prediction of classes of experimental samples.

This paper provides areview the microarray data analysis pipeline
with an emphasis on these areas, to highlight key statistical issues
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and to suggest appropriate methods and models for common
analytic situations. A running example is provided based on data
from a mouse immune response experiment as analyzed by Jain et
al. [1] to identify differentially expressed genesin three
populations of immune exposure: naive (no exposure), 48 hour
activated, and CD8+ T-cell clone D4 (longterm mild exposure).
The exampleillustrates some of the anaysis steps and is presented
in the context of the gatistical analysis software S-PLUS and its
associated module for microarray analysis, StArrayAnalyzer.

THE MICROARRAY ANALYSISPIPELINE
At a high-level, the microarray anaysis pipeline follows the
standard analysis pipeline viz. experimenta design, data access,
data preparation, modeling, reporting, deployment. Specific
components and issuesinclude:
1. Experimenta Design
e Sample size estimation
e Assignment of experimenta conditionsto arrays —
particularly important in 2-channel arrays, which are
naturally incomplete block designs with blocks of size 2.
2. DataAccess
e Database and LIMS access; dealing with (sometimes
proprietary/binary) specific file formats.
3. Pre-processing
e Image analysis— registration, segmentation, estimation of
signal and background;
e Genefiltering e.g. removal of genesthat show no expression
at any experimental condition;
e QA of chipsand datawithin chips;
e Background and non-specific binding adjustment;
e Probelevel analysis of arrays with more than one probe per
transcript e.g. Affymetrix;
e Normalization within and between arrays.
4. Analysis and modeling
e Identification of genesthat are differentialy expressed
across experimental conditions — methods for two-level and
multi-level designs;
e Clustering of samples and genes (class discovery);
e Classification of samples (class prediction);
e Validation and use of datafrom related experiments.
5. Reporting
e Analysis of function for identified genes — e.g. assessment of
gene ontology categories that are over- (and under-)
represented in the differentialy expressed genesidentified
e Annotation of tabular and graphical analysis summaries
6. Deployment
e Making the analyses available to the biol ogist/scientist user
community
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EXPERIMENTAL DESIGN AND DATA
ACCESS

Microarrays are used in many different experimenta scenarios.
Two broad inferential classes are (@) identification of
differentially expressed genes across specific experimental
conditions of interest, and (b) exploratory studies involving many
experimental samples.

Examples of (8) include many functional genomics studies
exploring cellular pathways and events under experimenta
conditions of interest e.g. comparisons of wild-type v knockouts,
drug candidates and known potent/toxic agents, state/tissue
comparisons (e.g. tumor v non-tumor). Experiments typically
include two experimenta conditions and sometimes extend to
time course (progression) and/or multi-factorial conditions.

Examples of (b) include studies of disease taxonomy and
genotype-phenoctype relaionshipsi.e. class discovery and class
prediction studies. Applications include devel oping mRNA
signatures for tumors (and resulting risk stratification, survival
outcomes prediction and personalized diagnosis/treatment);
profiling of chemotherapeutic (and potentially toxic) drugs; and
obtaining insight into molecular mechanisms of disease and drugs.

A key experimental design question, particularly in the case of ()
is“how many replicate chips?” Pan et d. [2] provide some
insight into thisaswell as S-PLUS code for estimating sample
sizes. With larger experimenta designs, e.g. factorid designs and
time-course experiments, lessreplication is needed provided there
is an adequate number of total chipsin the experiment. Two-
channel studies can be set up asincomplete block designs with
blocks of size 2, and linear modelsincluding terms for the channel
within chip effect are anatura approach [3]. Dye-swap designs,
where treatments are run on different channels of the same chip
and again with the channels reversed on another chip, help
balance/ orthogonalize the dye/channel effect. Loop designs
correspond to (balanced) incomplete block designs and are
efficient in that sense. Reference designs are useful in that they
alow additional runsto be added to the experiment, but they are
inefficient [4] since they involve the use of the reference sample
on half of the observations; also the treatments are confounded
with dyes in this design. Saturated designs have potential for
larger experiments but have not been explored for microarray
applications.

Accessing and managing microarray datais an important
convenience in facilitating data andysis. S+ArrayAnalyzer
includes the Affymetrix API’s, which makes S+ArrayAnal yzer
fully compatible with al Affymetrix microarray systems, current
and future, including the new GeneChip® Operating Software
(GCOS) output and the entire installed base of Affymetrix
instruments and scanners. Affymetrix data are read-in through
point-and-click/browse-files or through asingle file that specifies
location of files for import (Figure 1). Such methods are similarly
available for cDNA data.

Searching and importing data from databasesis also readily
accomplished. S-PLUS/S+ArrayAnalyzer includes native driver
access to Oracle, SQL-Server and Sybase; and simple user-
interfaces for searching databases are available. For example, the
Affymetrix AADM schemais easily searched to assemble chips
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for analysis. Other databases e.g. BioDiscovery GeneSight, lobion
Gene Traffic, and Rosetta Resolver are also easily accessed. The
simple access to data files and databases provides convenience in
assembling data for anaysis and avoi ds many otherwise manua
dataimport steps and the management of additional and redundant
file types. The format of microarray file types will likely change
in the future, and by abstracting access through API's, seamless
access for dl future systems using S+ArrayAnal yzer is assured.
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Figure 1. Reading in Affymetrix (binary) CEL data. Mouse
immuneresponse study: one-way design, 1 factor, 3 levels, 3
replicates. Files can beloaded individually by point-and-click;
or asagroup using the Read Design option in which casefile
locations are supplied as a text file.
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PRE-PROCESSING

There are four main aspects of pre-processing microarray dataviz.
adjustment for background, adjustment for non-specific binding
(e.g. mismatch in Affymetrix GeneChips), normalization, and
probe-level summary for chips with multiple probes per transcript
(Affymetrix GeneChips).

The goal of adjusting for background or non-specific binding isto
obtain accurate estimates of signal intensities. Assuming X and B
are unbiased and preci se estimates of tota and background
intensity, S= X - B will be an accurate and precise estimate of
signal. Note that variance of Sisthe variance of X + the variance
of B. One problem that often arisesis that estimates of B are not
accurate or precise. For example, Yang et d. [5] suggest
background estimates from many image analysis packages are
unreliable. Also, the subtraction of mismatch (MM) intensities
from perfect match (PM) intensities at the probe level in the
MASS analysis of Affymetrix probe-level data [6] typically
resultsin 30% of the PM-MM differences being less than zero.
Thisimplies that the MM intensities are estimated with more error
than the PM intensities; and/or that when both the PM and MM
intensity measureis|ow, that the errors are on par with the signal.
Thus, while subtraction of background is desirable in the goal of
producing accurate estimates of signal intensity, precision may be
compromised in this operation, particularly when overal
expression intensities are low. This may be overcome by using
better estimates of background e.g. median background in two-
channel chipsand global MM estimatesin Affymetrix chips[7].
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Negative and very small estimates of background-adjusted signal
intensities are nonethel ess problematic and require careful
handling in downstream analyses.

In two-channel arrays, the main pre-processing required is
normalization within slides for baancing intensities between
channels/dyes. The standard method emerging it to normalize asa
function of expression intensity using a smooth function of
intensity e.g. the Loess () functionin S-PLUS[8]. This
approach may also be used to remove spatial effects of print-tips
by fitting aseparate Loess () function for each print-tip.

In the Affymetrix system, each geneis represented by 11-20 PM
and MM pairs of probes, each probing a different region of the
mRNA transcript, typically within 600 base pairs of the 3’ end. In
the Affymetrix MASS software system, these 11-20 data pairs are
combined into asingle value per gene by adjusting for
background, subtracting MM from PM within each (PM, MM)
pair, normalizing chips within an experiment by a smple location
adjustment that aligns within-chip means, and combining the PM-
MM differences within probe pair sets using a Tukey biweight
function that downweights PM-MM val ues according to their
distance from the median(PM-MM) within the probe pair set.

Many researchers have devel oped alternatives to the MAS5
approach. Of note are the methods of Li and Wong [9], Irizarry et
a. [10], Zhang et a. [11] and Wu et . [7,12]. Li and Wong [9]
provide a model-based expression index (M BEI) via estimating
and removing a probe effect using a multiplicative model, and
normalizing based on genesthat don’t vary much across chips
within an experiment. Irizarry et al. [10] model PM intensity as a
sum of exponentia and Gaussian distributions for signal and
background respectively, and use a quantile normalization [13]
and alog-scal e expression effect plus probe effect model that they
fit robustly (median polish) to define the robust multi-array
analysis (RMA) expression estimate for each gene. Zhang et d.
[11] propose a stacking energy, positional -dependent-nearest-
neighbor (PDNN) model for the RNA/DNA duplex. Thisincludes
terms for the sequence of nearest neighbors (adjacent two bases)
and the position of these nucleotide pairs. Wu et d. [7] describe
an agorithm similar to RMA, but incorporating the MM using a
model based on GC content (GC-RMA). Wu et al. [12] propose a
unified physical/stochastic model, incorporating background and
non-specific binding, using physical aspects of the Zhang et al.
[11] model and a non-specific binding model of Naef and
Magnasco [14], in a stochastic framework. The performance of
the physical models[11,12] in practical situationsis unclear at
this point.

RMA, MBEI and MAS5 models are dl implemented in
S+ArrayAnalyzer (Figure 2). The success of the probe-level
analysis and normali zation can be assessed from diagnostic plots
e.g. the MvA plat (Figure 3), and boxplots showing distribution
summaries for each chip.

MASS provides an accurate summary, incorporating background
and MM corrections. The drawback isthat MM subtraction is
done within each probe pair and variability in MM is high,
resulting in approximately 30% of such subtractions being
negative. Thisis ameliorated somewhat by the Tukey biweight
algorithm used to combine the differences; and the resulting
expression measure is accurate, abeit somewhat variable for low
expression values. Conversely, RMA provides precise summary
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expression measures, with the drawback that such precisonis
obtained at the expense of some accuracy, particularly for low
expression values. Also, the somewhat aggressive quantile
normalization method should be applied with care, since it may
wash out differential expression when applied across al
experimental conditions, especialy if alarge number of genes
vary across experimental conditions. The S+ArrayAnalyzer GUI
alows RMA with and without normalization; normalization can
be done within experimenta conditions, and results of probe-level
analyses can be simply merged. MBEI is a nice model
conceptudly but suffers from the same bias issues as RMA and
requires many chips per experimenta condition for estimation of
the model -based index.
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Figure2. Probelevel analysis of Affymetrix data; RMA
Composite was chosen in thisanalysis.
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Figure 3. MVA plot showing results of RMA analysisfor the
M D4 experimental condition. Note y-axis scaleissmall, -0.6 to
0.6, and RM A hasresulted in tight agreement between
replicates.

The physical/stochastic model combinations hold promisein
obtaining estimates of expression for individual genesthat are
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both accurate and precise. Once verified in practical situations,
these model s will be included in S+ArrayAnalyzer.

DIFFERENTIAL EXPRESSION

A key goal of microarray experimentsisto identify genesthat are
differentially expressed while keeping the probability of false
discoveries acceptably low. From a statistical perspective, the first
part of this involves minimizing fal se negatives or maximizing
power of statistical test, and the second part minimizing false
positives.

Microarray data are often assessed as fol d-changes between
experimental conditions. While this scale has interpretive value,
inference based solely on fold-change is misleading because error
variability for each gene is heterogeneous under different
biological conditions and intensity ranges.

With two experimental conditions, differential expression tests
within genes are an example of the most basic statistical test —the
two-sampl e comparison. Standard statistical approaches include
the t-test and the Wil coxon test. These approaches require a
substantive number of replicates, since variances are much harder
to estimate than means. Depending on the nature of the
experiment, 6 or more replicates per experimental condition may
be needed for areliable estimate of within-gene error to be
constructed [2]. When many replicates are avail able, permutation
versions of the null distribution can be calculated by shuffling the
experimental condition labels and cal cul ating the test statistic for
each permutation. Note that the significance cutoffs obtained from
a permutation distribution are asymmetric and this may be
biologically meaningful in that thereis no reason to think that the
cutoffs for up- and down-regulation would be symmetric.

The usual t-stetistic is a signal-to-noise ratio:

ty= (Xg — X2) / 58X g — X )
where Xg, i = 1; 2, isthe mean intensity (log2 scal€) of the
i-th experimental condition, and se( ) denotes a pooled
standard error function within gene g and between
conditions 1 and 2. We conclude differential expression if
the observed tg for a given geneis greater than expected for the
appropriate t-distribution or permutation distribution. A summary
of multiple hypothesis testing methods in the context of
microarray dataanaysisisgivenin [15].

Estimation of the pooled standard error is akey issue. While a
large number of replicatesis desirable from a stetistical
perspective, microarrays can be expensive, and target RNA
sample availability is often limited. This resultsin some
experiments being performed with alimited number of replicates.
In this case, within-gene estimates of variability do not provide a
reliable hypothesis testing framework. For example, a gene may
have very similar differentia expression valuesin duplicate
experiments by chance alone. This can lead to inflated signa-to-
noise ratios for genes with low but similar expression values.

As such, anumber of statistical hypothesis tests have been

devel oped that provide more reliable estimate of the standard
error for comparisons of expression between experimental
conditions by borrowing strength from among the genes. These
can be broadly grouped into two classes: (a) variance function and
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transformation methods, and (b) error fudge factors and empirical
Bayes methods.

Variance function methods typically model the variance of
expression for a gene within an experimental condition asa
function of the mean expression for that gene [16-19]. Of note are
the methods of Durbin et d. [16] and Huber et a. [17] who
propose a generalized | og transformation and corresponding two
parameter variance function; and Jain et d. [1] who propose a
non-parametric variance function, estimated by pooling variance
estimates within bins of mean intensity, and smoothing the
variance function using the Loess () functionin S-PLUS.
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Figure4. Differential expression using the LPE test (Jain et al.
[1]) with Bonferroni FWER control.

Empirical Bayes methods include those of Efron et al. [19], Baldi
and Long [20], Newton et al. [21] and Lénnstedt and Speed [22].
Lonnstedt and Speed [22] shrink the within-gene variance
estimate towards an estimate including more genes, and construct
signal-to-naise ratios using the shrunken variance. Thisis similar
to the method of Tusher et d. [23] who include a fudge factor in
the denominator of the signal-to-noise ratio.

For more than two experimenta conditions, ANOV A and mixed
effect models can be used effectively [24-26]. In the case of
cDNA data, Wolfinger at d [25] suggest fitting 2 models: a
normalization mode fit to al the data, followed by a gene
expression model fit to each gene separately.

logayijg) =+ A+ T+ (AT)ij+ Eijg (1)

Rijkg= Mg+ Tig+ Sq + Ajgt Eijkg (9

Model (1) isthe normalization model, wherei, j and g are indices
for arrays, treatments and genes respectively. Arrays are

considered as arandom effect and an additional (random) effect
for arrays within dyes is sometimes needed.
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The term (AT) models the (random) channel effect. Modd (2) is
the gene expression model, fit to theresiduals, R, from model (1).
The term Smodels the (random) spot effect. Kerr et a [24] fit
similar models and assume all effects are fixed.

For Affymetrix data, Chu et a. [27] formulate asimilar pair of
models fit to the probe level data:

10g2(PM i jg) = u+ Tj+ Aij+ Eijq (1)
Rijkg= Mg+ Tig* Prg + Ajg+ Eijkg (2

Model (1) isthe normalization model, wherei, j and g areindices
for denotes arrays, treatments and genes respectively. Model (2) is
the gene expression model, fit to theresiduals, R, from model (1).
The term P models the (random) probe effect.

The above mixed models provide a flexible modeling framework;
for example in time course experiments, the treatment effect T can
be parameterized as contrasts versus baseline or as polynomials.
One criticism of these modelsis that the normalization models are
inadequate in some situations. An alternative approach isto
normalizefirst e.g. usng loess () for cDNA or quantile
normalization for Affymetrix data, and to fit the gene expression
models (2) above to the normalized data.

S+ArrayAnalyzer includes several methods for two sample
comparisons and multi-sample comparisons including various
flavors of t-tests and Wilcoxon tests with both distribution and
permutation-based null distributions. The LPE method [1] is
particularly suited to experiments with low replication. Additiona
methods for borrowing strength across genes are planned for the
next release [16, 22]. The ANOV A and mixed effects models are
readily fit in SPLUS using 1me () and examples of the models
outlined above are provided with S+ArrayAnalyzer. A new fast
ANOV A method has been recently devel oped; this can fit
ANOV A models to many chips (e.g. 30-100+) and 12,000 genes
in afew seconds.

SIGKDD Explorations.

No matter what test statistic is used, multiple comparisons are an
important consideration given the number of genes and tests.
Dudoait et a. [27] provide an overview in the context of
microarray experiments. In asingle test, one controls thetype |
error and chooses a rejection region that maximizes power (1 —
type Il error) while controlling type | error. In multiple tests, one
can control the family wise error rate FWER=Pr(V>0), the fase
discovery rate FDR=E(V/R | R>0)* Pr(R>0) or the positive fdse
discovery rate pFDR= E(V/R | R>0) where V=number of false
positives and R=total number of genes declared significantly
differentially expressed.

The simplest method to control the FWER isthe Bonferroni
method, in which a FWER is chosen and the p-value for asingle
test is multiplied by the number of tests and compared to the
chosen FWER. In this scenario if the FWER is o, the g individua
tests (one for each gene) have type | error o/g. The Bonferroni
procedure is conservative and several step-down procedures (e.g.
Westfall and Y oung [30]) have been proposed whereby the
Bonferroni adjustment is used for the most extreme value of the
test statistic/p-value for anindividua test, and this adjustment is
stepped down as the p-value becomes less extreme [28-30].

In microarray experiments the number of testsis often very large
e.g. >10,000 and FWER control may be too strict. Control of FDR
isaviable aternative. FDR was introduced by Benjamini and
Hochberg [31] and has recently been extended to pFDR by Storey
[32] who also introduced the notion of g-values as an error
measure applying to observed statistics with respect to the pFDR,
in the same way as the p-val ue provides this context with respect
to thetype | error and the adjusted p-value with respect to the
FWER. Storey [32] and Storey and Tibshirani [33] both fix the
rejection region and estimate the FDR. Reiner et a. [34] describe
resampling-based methods for controlling FDR.

S+ArrayAnalyzer includes several methods for FWER and FDR
control for al its multiple testing procedures. These include
Bonferroni and various step-down FWER control procedures [26-
28], aswell asthe FDR control procedures of Benjamini and
Hochberg [29] and Benjamini and Yeketueli [35]. The LPE test
includes a resampling-based method for controlling FDR [33, 34].

Results from differential expression analysis aretypically
presented as a gene list. Thisis managed as a dataframein
S+ArrayAnalyzer, sorted by adjusted p-values and including
columns for means of experimental conditions as well asfold
changes and raw p-values for each contrast between experimental
conditions. The genelist dataframe is indexed by gene name and
includes indices for ated metadata and for access to raw
chip data.

The differential expression analysisis graphicaly presented as a
volcano plot (Figure 6). This combines the adjusted p-value (y-
axis) with this fold change (x-axis) and thus provides both
statistical and biological perspectives.
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CLASS DISCOVERY AND CLASS

PREDICTION

Cluster andysis has been a standard approach to microarray data
since the beginnings of microarray technology and is the basis of
most class discovery efforts. Hierarchical cluster analysis and
resulting dendrograms represent distances between samples’
expression profilesin avisually appeaing manner and handle the
many gene measurements on microarrays in asimple and concise
manner. Hierarchical cluster analysis applied to genes, similarly
summarizes and presents the many genesin avisually appealing
way. Partitioning cluster analysis helps identify candidate
subgroups within collection of samples. As such, both hierarchical
and partitioning clustering have been widely used, particularly in
the area of oncogenomics, in the identification and
characterization of cancer subtypes.

When clinicd dataare available e.g. survival times, supervised
analyses are possible and have been used more recently in class
prediction studies. However, even when phenotype data are
available, unsupervised clustering methods are often used to
identify classes of samples/genes and to then relate these classes
to the phenotype data.

Class discovery and class prediction studies have much potentia
in providing a molecular basis for tumor classification and more
personalized treatments based on such classification. Current
methods for classifying tumorsrely on symptomsi.e.
morphological and clinical variables, and patients with the same
diagnosis often have very different treatment responses e.g.
survival times. Expression intensities from microarrays may be
used to characterize molecular variations among tumors. This can
provide afiner and morereliable classification, and facilitate
identification of marker genesthat distinguish sub-classes. This
more detailed classification can improve the understanding and
prediction of cancer survival and targeting of treatments (e.g.
drug, chemotherapy, surgery) to molecular subtypes, thus
personalizing the cancer treatment.
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Key early work in this areawas done by Alizadeh et d. [36],
Perou et d. [37] and Khan et al. [38]. Alizadeh et al. [36]
identified subtypes of diffuse large B-cell lymphoma (DLBCL)
using hierarchical clustering methods and related the subtypes to
survival data. Perou et a. [37] did asimilar study on breast cancer
samples. Khan et al. [38]. studied small round blue cell tumors
(SRBCTs) and used aneura network to predict four subtypes of
SRBCTs. Tibshirani et a. [39] develop a nearest shrunken
centroid method and applied this successfully to the Khan et d.
[38] data. This ssmpler method also provides an intuitive list of
genes that are used in predicting the classes. Similar, more recent
studies involving pediatric acute lymphoblastic leukemia, BLBCL
and breast cancer are presented in [40-42].

Another active areafor class prediction methodsisinthe profiling
of chemotherapeutic drugs. Thisinvolves the typing of new novel
agents and devel opment of pathway-targeted drugs where the
microarray experimental data provides insight into the mode of
drug action. Several systematic profiling studies have been done
and there is much current proprietary research underway within
pharmaceutical companies. A review is provided by O’ Neill et al.
[43] and includes work by Dan et d. [44], profiling/typing in cell
lines: 55 drugs, 39 cancer lines, and Zembutsu et d. [45],
profiling/typing in xenografts: 85 human cancer xenografts.

While many early cluster analyses of expression data were applied
to all genes and all samples, thisis not advisable from a statistical
perspective — hierarchical clustering always finds structure, even
with random noise. We recommend filtering the genes prior to
clustering e.g. by including only significantly differentialy
expressed genes, genes with a minimum fold-change etc. Also,
one may cluster other val ues besides the raw expression values;
for example in time course experiments one may cluster the time
contrast coefficients or t-statistics e.g. 1 df contrasts with baseline
or polynomial time effects.

S+ArrayAnayzer and S-PLUS include many methods for class
discovery and class prediction. Cluster analysis methods include
the library of algorithms described in Kaufman and Rousseeuw
[46]. The partitioning methods include K-means — kmeans (),
partitioning around medoids — pam () , the model-based methods
—Mclust () and EMclust (), and afuzzy clustering method
in which probability of membership of each classis estimated —
fanny (). A method for large datasets, clara (), isaso
included, whichis based on pam () . The hierarchical methods
include agglomerative methods (which start from individual
points and successively merge clusters until one cluster
representing the entire dataset remains) and divisive methods
(which consider the whol e dataset and split it until each object is
separate). The available agglomerative methods are agnes ()

and hclust (). Theavalable divisve methods are diana ()
and mona (). TheMclust () and EMclust () methods assume
that data are generated from an underlying mixture of Gaussian
digtributions; and provide an estimate of the number of clusters
using the Bayes information criterion (BIC) for each model
considered. TheMclust () and EMclust () methodsare
availablein theMclust library (Fraey and Raftery [47]) from
http://www.stat.washington.edu/fraley/mclust/. The pam ()
method also allows automatic estimation of the number of clusters
using the average silhouette width for each model considered. Self
organizing maps [48] are availablein the SPLUS class library.
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Class prediction methods availablein S-PLUS include all of the
standard statistical modeling and supervised |earning methods e.g.
regression, discriminant functions, trees (CART and recursive
partitioning), neural nets, generalized additive models, support
vector machines. Many of these methods are availablein the S-
PLUS librariesMASS and class as described in Venables and

Ripley [49].

Graphical summaries of hierarchical cluster analysis of genes and
samples are provided in Figure 7; and from partitioning cluster
analysis of the genesin Figures 8-10.
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Figure 7. Heatmap and dendrogram from hierar chical cluster
analysis of significant genesfrom LPE analyss. Samples
appear from left toright asM D4, M48, MO in groups of the 3
replicates.
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Figure 8. Partitioning cluster analysis (pam) of significant
genesfrom 2 d.f. F-test in one-way ANOVA analysis. Principal
component biplot shows clear separation into 2 major classes.
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Figure9. Partitioning cluster analysis (pam) of significant
genesfrom 2 d.f. F-test in one-way ANOVA analysis.
Silhouette plot shows excellent 2-class cluster analysisfit.
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Figure 10. Partitioning cluster analysis (pam) of significant
genesfrom 2 d.f. F-test in one-way ANOVA analysis. Parallel
coor dinates plot shows expression intensity patternsfor the 2
major classes.

ANNOTATION

Thereisagrea dea of annotation metadata available for any
given gene. Examplesinclude LocusLink, Unigene, chromosome
number, chromosomal |ocation (cytoband or bp), KEGG pathway
information and Gene Ontology (GO) categorizations. A
microarray dataset typically includes a set of known identifiers
corresponding to the probes/probesets used. These identifiers are
typically unique for any manufacturer or spotted array system;
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and can be simply linked to identifiers for the metadata sources,
so that each probe/probeset on amicroarray chip has readily
available identifiers for looking up metadata information in the
various annotation databases.

Many online databases (Unigene, LocusLink, GO/Amigo) support
querying on the URL. S+ArrayAnalyzer includes S-PLUS
functions that push database identifiers for probes/probesets to
online databases and open a browser window with the gene
annotation information displayed. Other sites e.g. Affymetrix GO
browser, require alist of Affymetrix ID’ s to be uploaded. In this
case S+ArrayAnalyzer has an S-PLUS function that writes the
relevant IDs to afile that can be uploaded to the Affymetrix GO
browser. S+ArrayAnalyzer includes libraries with annotation
identifiers for most common Affymetrix chips e.g. HGU95*,
HGU133*, HU6800, MGU74*, MOE430*, RGU34*, RAE230*.
Figure 11 shows results from uploading an identified genelist to
the Affymetrix GO browser. The uploaded list comprised 11
genes from the time0 vs. time48 RMA/LPE analysis, filtered with
fold change > 3 and adjusted p-value < 0.05.
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Figure 11. Annotation of 11 genes (fold change > 3, adjusted
p-value < 0.05) using Affymetrix GO browser.
S+ArrayAnalyzer writesout filethat isuploaded to the
Affymetrix GO browser website.

There are now severa websites and web-based applications that
merge annotation information from a variety of sources and
provide annotation services for an uploaded gene list. Of noteis
the Onto-Express family of applications as described by Draghici
[50] at: http://vortex.cs.wayne.edu/Projects.html.

Figure 12 shows results from uploading an identified genelist to
the LocusLink website. The uploaded list again comprised the
same 11 genes, filtered with fold change > 3 and adjusted p-value
< 0.05. S+ArrayAnalyzer includes functions that query the
LocusLink and Unigene websites on the URL with a user-defined,
filtered gene list. S+tArrayAnalyzer aso includes functions for
importing PubMed abstractsinto S-PLUS for further analysis.

The annotation functions referred to above are also simpleto
launch from the S+ArrayAnalyzer command line, given a set of
gene identifiers gnames:
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> #LocusLink

llnames <- as.numeric (mgu74aLOCUSID [gnames])
locuslinkByID (llnames)

> #Unigene

accids <- unlist (mgu74aACCNUM [gnames])
genbank (accids, disp="browser")

> #Pubmed

pmedids < mgu74aPMID [gnames[1]]

pubmed (pmedids, disp="browser")

> #GO

genelist.G0ids <- mgu74aGO [gnames]
browsego (genelist.GOids)
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Figure 12. Annotation of 11 genes (fold change > 3, adjusted
p-value< 0.05) using LocusLink website. S+tArrayAnalyzer
includes functionsthat query L ocusLink, Unigene and other
annotation web databases, on the URL with a user-defined
filtered genelist.

S+ArrayAnalyzer makes it easy to send lists of genes resulting
from significance testing (e.g. LPE, ANOVA) and/or cluster
analysis to the vari ous annotation web sites referred to above.

SOFTWARE AND DEPLOYMENT
S+ArrayAnalyzer is an add-on moduleto S-PLUS and can be run
by a single user as part of S-PLUS for Windows or by multiple
users through aweb user interface. S+ArrayAnalyzer includes
much of the Biconductor functionality (www.bioconductor.org),
as well as methods devel oped at Insightful. S+ArrayAnalyzer
includes a user interface with point and click workflow
functionality for data management, pre-processing, differentia
expression and clustering as well as tabular and graphical
reporting and annotation. Thereis, of course, much functionality
that is available through S-PLUS scripting that is not exposed in
the S+ArrayAnalyzer user interface. S+ArrayAnalyzer includes
severa such worked examplesin documentation and scripts; and
through an extensive help system.
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S+ArrayAnalyzer is simply deployed through aweb user interface
running on Solaris, AlX, Linux and Windows. The web user
interfaceissimilar to the S-PLUS for Windows interface and
includes awizard-style wak through of user-defined options.
Both the desktop and web-server interfaces are very simply
customized using S-PLUS functions on the desktop, and
javascript and related tools on the web implementation. An
optimal configuration for S+ArrayAnalyzer is a situation with 1-5
power users using S-PLUS and S+ArrayAnalyzer on the desktop,
and managing deployment of the web-based S+ArrayAnal yzer to
acommunity of scientists.
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