Mining Patterns in Long Sequential Data with Noise

Wei Wang Jiong Yang Philip S. Yu
IBM T. J. Watson Research IBM T. J. Watson Research IBM T. J. Watson Research
Center Center Center

30 Saw Mill River Road
Hawthorne, NY 10532

wwl@us.ibm.com

ABSTRACT

Pattern discovery in time series data has been a problem
of great importance in many fields, e.g., computational bi-
ology, performance analysis, consumer behavior, etc. Re-
cently, considerable amount of research has been carried out
in this area. The facts that the input data is typically very
large and noises may present in various formats pose great
challenge to the mining process. Recently, we have made
several new research advances in this area. In this paper,
we present some of them. We will survey new models pro-
posed to address different types of noises as well as scalable
algorithms developed for efficiently mining patterns under
each model.

1. INTRODUCTION

In many applications, data typically present in the form
of sequence(s). This may be either a consequence of em-
ploying a natural temporal ordering among individual data
(e.g., financial market data) or a result of complying to some
inherent physical structure (e.g., protein sequences in chro-
mosomes). The input sequence is usually very long, which
demands high scalability of the pattern discovery process.
As an important research direction of the data mining field,
mining patterns in long sequential data has been widely
studied during recent years, which includes but is not lim-
ited to the following application domains.

e Bio-Medical Study. Each human gene consists a se-
quence of (usually over a half million) amino acids.
A certain combination of amino acids may uniquely
define a specific aspect of the biological function or
appearance of a cell. Identifying such kind of meaning-
ful combinations plays a crucial role in understanding
the fundamental of life towards a deeper level, which
has been the goal of many biologists for many years.
By viewing the chromosomes as sequences of amino
acids, the above task can be transformed into mining
sequential patterns that satisfying some user-specified
criteria.

e Performance Analysis. Many system-monitoring ap-
plications involve collecting and analyzing attributes
whose values evolve over time. Patterns of system
state transition has been proved to be very useful in

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

30 Saw Mill River Road
Hawthorne, NY 10532

jlyang@us.ibm.com

30 Saw Mill River Road
Hawthorne, NY 10532

psyu@us.ibm.com

predicting system behavior from a recent state history
and in preventing disastrous circumstances from oc-
curring.

e Client Profile. User profiles can be built based on the
discovered pattern on trace logs. Such knowledge can
either be utilized to develop an optimal proxy caching
scheme or be used to provide better market targeting
tools.

As a matter of fact, noises exist in most applications, which
adds considerable challenges to the pattern mining process
simply because many important patterns may be concealed
if the model employed fails to accommodate noises properly.
Depending on the type of application and the user’s inter-
ests, tolerable noises may present in different formats and
hence require different models accordingly.

1. Injection of noise. A typical example of noise injection
is that, a client may accidentally access some irrelevant
web page by mistake when he/she surfs on the Inter-
net. Such access entries may be regarded as random
noises inserted in the long traces during the process of
mining meaningful patterns from the collected trace
logs.

2. Qver-population of uninteresting patterns. Different
symbols (or events) may occur at vastly different fre-
quencies by nature. For example, the sales of lamps
is typically much higher than that of big furniture.
However, even though patterns involving less expan-
sive goods (such as lamps) occur more frequently, they
may be considered not very interesting if the occur-
rences of such patterns are within people’s expectation.
In contrast, unexpected patterns involving furniture, if
any, may be of great interests (probably because of a
considerably high profit margin) even though such pat-
terns may have relatively small number of occurrences
in the data. Unfortunately, the significance of an infre-
quent but interesting pattern can be easily diluted by
the “over-populated” unwanted patterns. These un-
wanted patterns can be viewed as “noise” in a broad
sense because their presence obstructs (to some extent)
the discovery of interesting infrequent patterns.

To address above issues, powerful model(s) that suits each
specific purpose is demanded to provide clear separation be-
tween useful patterns and noises, and efficient mining algo-
rithms are also needed to make these new models applicable

Volume 2, Issue 2 - page 28

to long data sequences. As mentioned before, the sequence
can be very long and can easily range to more than hun-
dreds of millions of symbols. This may result in very long
patterns that may contain thousands of symbols. There-
fore, any pattern discovery algorithm has to scale well with
respect to both the length of the input sequence and the
length of potential patterns. In this paper, we will focus on
each type of noise in a separate section and present some
recent advances to meet the challenge.

2. INJECTION OF NOISES

In this section, we discuss some recent development aim-
ing at handling noises in the form of injection. Periodic-
ity detection on sequence data is a challenging problem of
great importance in many real applications. Two models,
namely asynchronous patterns [16] and meta patterns [17],
are proposed recently to address the issues of accommodat-
ing insertion of random noise and characterizing change of
behavior.

2.1 Asynchronous Patterns

Most previous research in mining periodic patterns assumed
that the disturbance within a series of repetitions of a pat-
tern, if any, would not result in the loss of synchronization of
subsequent occurrences of the pattern with previous occur-
rences [10]. For example, “Joe Smith reads newspaper ev-
ery morning” is a periodic pattern. Even though Joe might
not read newspaper in the morning occasionally, this distur-
bance will not affect the fact that Joe reads newspaper in the
morning of the subsequent days. In other words, disturbance
is allowed only in terms of “missing occurrences” but not as
general as any “insertion of random noise events”. However,
this assumption is often too restrictive since we may fail to
detect some interesting pattern if some of its occurrences is
misaligned due to inserted or deleted noise events. Consider
the application of inventory replenishment. The history of
inventory refill orders can be regarded as a symbol sequence.
Assume that the time between two replenishments of cold
medicine is a month normally. The refill order is filed at
the beginning of each month before a major outbreak of flu
which in turn causes an additional refill at the 3rd week. Af-
terwards, even though the replenishment frequency is back
to once each month, the refill time shifts to the 3rd week
of a month (not the beginning of the month any longer).
Therefore, it would be desirable if the pattern can still be
recognized when the disturbance is within some reasonable
threshold. In addition, the system behavior may change over
time. Some pattern may not be present all the time (but
rather within some time interval). Therefore, it is impor-
tant to mine periodic patterns that are significant within a
subsequence of symbols which may contain disturbance of
length up to a certain threshold.

In [16], we proposed a more flexible model — Asynchronous
Periodic Pattern. Two parameters, namely min_rep and
maz-dis, are employed to qualify valid patterns and the
symbol subsequence containing it, where this subsequence
in turn can be viewed as a list of valid segments of perfect
repetitions interleaved by disturbance. Each valid segment
is required to be of at least min_rep contiguous repetitions
of the pattern and the length of each piece of disturbance
is allowed only up to maz_dis. The intuition behind this is
that a pattern needs to repeat itself at least a certain num-
ber of times to demonstrate its significance and periodicity.

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

On the other hand, the disturbance between two valid seg-
ments has to be within some reasonable bound. Otherwise,
it would be more appropriate to treat such disturbance as
a signal of “change of system behavior” instead of random
noise injected into some persistent behavior. The parameter
max_dis acts as the boundary to separate these two phe-
nomena. Obviously, the appropriate values of these two pa-
rameters are application dependent and need to be specified
by the user. For patterns satisfying these two requirements,
our model will return the subsequence with the maximum
overall repetitions. Note that, due to the presence of dis-
turbance, some subsequent valid segment may not be well
synchronized with the previous ones. (Some position shift-
ing occurs.) This in turn would impose a great challenge in
the mining process.

A pattern may be partially filled to enable a more flexible
model. For instance, (cold_medi, *, *, *) is a partial monthly
pattern showing that the cold medicine is reordered on the
first week of each month while the replenishment orders in
the other three weeks do not have strong regularity. How-
ever, since we also allow the shifted occurrence of a valid
segment, this flexible model poses a difficult problem to be
solved. For a give pattern P, its associated valid segments
may overlap. In order to find the valid subsequence with
the most repetitions for P, we have to decide which valid
segment and more specifically which portion of a valid seg-
ment should be selected. While it is relatively easy to find
the set of valid segments for a given pattern, substantial dif-
ficulties lie on how to assemble these valid segments to form
the longest valid subsequence. As shown in Figure 1, with
min_rep = 3, S1, S2, and S3 are three valid segments of the
pattern P = (di, %, *). If we set max_dis = 3, then X; is the
longest subsequence before S3 is considered, which in turn
makes X, the longest one. If we only look at the symbol
sequence up to position j without looking ahead in the se-
quence, it is very difficult to determine whether we should
switch to S» to become X; or continue on S;.

This indicates that we may need to track multiple ongoing
subsequences simultaneously. Since the number of different
assemblages (of valid segments) grows exponentially with
increasing period length, the process to mine the longest
subsequence becomes a daunting task (even for a very sim-
ple pattern such as (di,*,%)). To solve this problem, for
a given pattern, an efficient algorithm is developed in [16]
to identify subsequences that may be extended to become
the longest one and organize them in such a way that the
longest valid subsequence can be identified by a single scan
of the input sequence and at any time only a small portion
of all extendible subsequences needs to be examined.
Another innovation of the mining algorithm is that it can
discover all periodic patterns regardless of the period length.
Most previous research in this area focused on patterns for
some pre-specified period length [10; 14] or some pre-defined
calendar [15]. Unfortunately, in practice, the period is not
always available a priori (It is also part of what needs to be
mined out from the data). The stock of different merchan-
dises may be replenished at different frequencies (which may
be unknown ahead of time' and may also varies from time
to time). A period may span over thousands of symbols in
a long time series data or just a few symbols. A distance-

!The replenishment order of a merchandise may not be pre-
scheduled but rather be filed whenever the inventory is low.

Volume 2, Issue 2 - page 29

i
\

S

v |
sequence dy d [dy dy [c] o d [d] o) [dy (0 dy s (d) /A g /O gy /A s

S3

Figure 1: Example of Symbol Sequence

based pruning mechanism is first introduced to discover all
possible periods and the set of symbols that are likely to
appear in some pattern of each possible period. In order to
find the longest valid subsequence for all possible patterns, a
level-wise approach is employed. The Apriori property also
holds on patterns of the same period. That is, a valid seg-
ment of a pattern is also a valid segment of any pattern with
fewer symbols specified in the pattern. For example, a valid
segment for (di,d2,*) will also be one for (di,*,*). Then,
for each likely period, all valid patterns with their longest
supporting subsequences can be mined via an iterative pro-
cess efficiently.

2.2 Meta Patterns

As we mentioned earlier, due to the changes of system be-
havior, some pattern may be only notable within a por-
tion of the entire data sequence and different patterns may
present at different places. The evolution among patterns
may also follow some regularity. Such regularity, if any,
would be of great value in understanding the nature of the
system and building prediction models. Consider the appli-
cation of Internet user profile. The sequence of web pages
that a user accesses is often used to construct the user pro-
file. An accurate profile is significant in many application
domains including personalization and recommendation sys-
tems. During a period of time, a user may access some web
sites repetitively. Such a behavior may be represented by a
periodic pattern that can be put into user’s profile. More-
over, a user’s Internet access pattern may change over time.
For instance, during a normal business day, one may surf
financial web sites mostly when the stock market is open
and may switch to sports oriented web sites for the rest
of the day. At a coarser level, we may also find that such a
pattern holds during weekdays whereas a total different pat-
tern presents during weekends. Such a weekly pattern can
be represented in the form of meta-pattern [17] which may
take occurrences of patterns/meta-patterns (of lower granu-
larity) as components. Because of the hierarchical nature of
the meta-pattern, the concept of level is introduced to rep-
resent the “depth” of a meta-pattern. In contrast, we refer
to the patterns that contain only raw event(s) is referred to
as the basic patterns (or patterns of level 1), which may be
viewed as special cases of meta-patterns.

However, most previous research in this area focused on min-
ing patterns that only take basic events as their components
and did not address the above issue. The meta-pattern pro-

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

posed in [17] is a more general model for periodicity than
any previous model. The recursive nature of meta-pattern
not only can provide a more compact representation of com-
plicated patterns but also can capture the hierarchies of
pattern evolutions, which may not be expressible by pre-
vious models. As some tolerable noise is usually allowed
within a series of pattern repetitions [16] to accommodate a
certain degree of imperfectness, two portions (of a data se-
quence) where a pattern is notable may have different layout
of pattern occurrences. As a result, there may not exist any
common representation in terms of raw events. For exam-
ple, two patterns (a, b, *) and (b,c) appear in the sequence
alternately in Figure 2(a). (Here, a pattern may be only
partially filled and “*” is used to substitute the “don’t care”
position(s).) The length of each portion where (a, b, *) is no-
table is 19 and each portion where (b, ¢) is notable contains
6 symbols. In addition, each gap between notable portions
of (a,b,*) and (b,c) consists of 2 positions while a three-
position gap presents after each notable portion of (b,c).
All of these can be represented by a meta-pattern of four
components ((a,b,*) : [1,19],* : [20,21], (b,c) : [22,27],* :
[28,30]). The numbers in the brackets indicate the offset
of the component within the meta-pattern. Let’s take a
closer look at those two portions where the pattern (a,b, *)
is notable: one is from position 1 to 19 and the other is
from position 31 to 49. Note that both portions contain
some noise that impairs the perfectness on repetition of
(a,b,*). Neither of them can match a single basic pattern
format (i.e., (a,b,*,a,b, *,a,b,*,a,b, *,a,b,* a,b,*)). Since
the locations and durations of the noise are different in these
two portions, (a, b, *,a,b, *,a,b, *, *, %, %, %, a,b, *,a,b, *) and
(a,b,%,a,b,%,a,b,*, %, a,b,*,a,b,*, a,b, *) do not match with
each other. In general, the noise could occur anywhere, be
of various duration, and even occur multiple times within
the portion where a pattern is notable as long as the noise
is below some threshold. Even though the allowance of noise
plays a positive role in characterizing system behavior in a
noisy environment, it prevents such a meta-pattern from be-
ing represented in the form of an (equivalent) basic pattern.
The model of meta-pattern is therefore proposed [17] to pro-
vide a more powerful means to periodicity representation.
However, the flexibility of meta-pattern poses serious chal-
lenges in the discovery process, which may not be encoun-
tered in mining basic patterns.

e While a basic pattern has two degrees of freedom: the

Volume 2, Issue 2 - page 30

period (i.e., the number of components in the pattern)
and the choice of symbol/event for each component, a
meta-pattern has an additional degree of freedom: the
length of each component in the pattern. It is incurred
by the fact that a component may occupy multiple po-
sitions. This extra degree of freedom would increase
the number of potential meta-pattern candidates dra-
matically.

e Many patterns/meta-patterns may collocate or over-
lap for any given portion of a sequence. For example,
both of (a,b, a,*) and (a, *) are valid within the subse-
quence shown in Figure 2(b). As a result, during the
meta-pattern mining process, there could be a large
number of candidates for each component of a (higher
level) meta-pattern. This also aggravates the mining
complexities.

Therefore, how to identify the “proper” candidate meta-
patterns is very crucial to the overall efficiency of the min-
ing process. To tackle this problem, a so called component
property is identified and, in addition to the traditionally
used Apriori property, to prune the search space. This is in-
spired by the observation that a pattern may participate in
a meta-pattern only if its notable portions exhibit a certain
cyclic behavior. A segment based algorithm is devised to
identify the potential period of a meta-pattern and for each
component of a possible period, the potential pattern can-
didate(s) and its length within the meta-pattern. The set
of all meta-patterns can be categorized according to their
structures and are evaluated in a designed order illustrated
in Figure 3. For example, the candidate patterns at level 1
with 1 non-eternal component is examined first. Based on
these patterns, the candidate patterns at level 1 with two
non-eternal components are generated and examined. This
procedure continues until all candidate patterns at level 1
are examined. After that, the patterns at the second level is
generated and examined in the same manner as the patterns
in level 1. Next, the candidate patterns at level 3, 4, and
so on are generated and examined successively. As a result,
the pruning power provided by both properties can be fully
utilized. The pruning effects of the Apriori property and
the component property are indicated by solid arrows and
dashed arrows, respectively.

3. OVER-POPULATION OF UNINTEREST-
ING PATTERNS

In this section, we discuss some research achievement in min-
ing interesting patterns involving infrequent event(s) in long
data sequences. As we mentioned in the previous section,
the support (number of occurrences) has been widely used as
the metric to identify the significant patterns from the rest
[9; 10]. A qualified pattern in the support model must oc-
cur sufficient number of times. In some applications, such a
model is proved to be very meaningful and important. How-
ever, in some other applications, the number of occurrences
may not represent the significance of a pattern. Consider
the following examples.

e Computational Biology. A human being chromosome
consists of a sequence of genes. Researchers are inter-
ested in gene expressions (i.e., a portion of gene se-
quence) which are statistically significant rather than

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

gene expressions that occur frequently. The statistical
significance of a gene expression is defined as how likely
such a gene combination would occur in an equivalent
random data set [5]. In other words, we want to find
the gene expressions that have very low probability to
occur by chance, but actually occur in some chromo-
some. It is obvious that a statistically significant gene
expression may not necessarily occur frequently, thus,
the support metric is not an appropriate measurement
of the significance of a gene expression.

o Web server load. Consider a web server cluster con-
sisting of 5 servers. The workload on each server is
measured by 4 ranks: low, relatively low, relatively
high, and high. Then there are 4° = 1024 different
events, one for each possible combination of server
states. Some preliminary examination of the cluster
states over time might show that the state fluctuation
complies with some periodic behavior. Obtaining such
knowledge would be very beneficial for understanding
cluster’s behavior and improving its performance. Al-
though the high workload on all servers may occur at
a much lower frequency than other states, patterns in-
volving it may be of more interests to some system
administrators.

e Farthquake. Earthquakes occur very often in Califor-
nia. It can be classified by its magnitude and type.
Scientist may be interested in knowing whether there
exists any inherent seismic period so that prediction
can be made. Note that patterns involving big earth-
quake is much more valuable even though it occurs at
a much lower frequency than smaller ones.

In the above examples, we can see that users may be inter-
ested in not only the patterns with high occurrences, but
also the patterns that do not occur frequently by chance
as well. A large number of occurrences of an “expected”
frequent pattern sometimes may not be as interesting as a
few occurrences of an “expected” rare pattern. The sup-
port model is not ideal for these applications because, in
the support model, the occurrence of a pattern carries the
same weight (i.e., 1) towards its significance, regardless of its
likelihood of occurrences. Intuitively, in above applications,
the occurrence of a rare pattern should accumulate more
weights/significance than a frequent pattern. To address
this problem, we propose a new model in [18] to character-
ize the statistically stgnificant patterns instead of frequent
patterns.

The significance metric of an occurrence of a pattern should
have the following properties. (1) The significance of an
occurrence is anti-monotonic with respect to the likelihood
that a pattern may occur by chance (or by prior knowledge).
(2) The metric should have some physical meaning, i.e., not
arbitrary created. It is fortunate that the information metric
[4] which is widely studied and used in the communication
field can fulfill both requirements. Intuitively, information
is a measurement of how likely a pattern will occur or the
amount of “surprise” when a pattern actually occurs. If
a pattern is expected to occur frequently based on some
prior knowledge or by chance, then an occurrence of that
pattern carries less information. Thus, we use information
as the measure of significance for an occurrence of a pattern.
The information gain metric is introduced to represent the

Volume 2, Issue 2 - page 31

tolerable
disturbance

tolerable

"don't care"'s "don't care"'s disturbance "don't care"'s "don't care"'s

101112l;;14151617181920212223242526272829333132333435363 3839404142434445464748495051525354555657585963

123456789
abcabdabbbecbabbaqualbcbcbc‘efalabfabecabcabdabaabedelbcbcbc‘eaf
L |

(ab,*) (b,) (ab,*) (b,)
(@
(ab,a*) (*,*,ad)
{abacabababaa”adadabadacaqbbad
(a™)
(b)
Figure 2: Meta Pattern
° ° °
° ° °
° ° °
A CEE T .
| levd-3meta-patternswith level-3 meta-patternswith | level-3 metapatternswith o !
! one non "*"pcomponens_ two non "*‘pcomponents = threenon” R components ——>® e e level3
" level-2 meta-patternswith level-2 meta-patternswith | levd2 metapatternswith L L !
one non "*"pcomponent two non "*"pcomponents — ‘resnon components ——>® © @ level2
””””” bascpaternswith | bascpattenswith . bascpaenswith o
onenon PE component = two non A components = three nonp"*" components =——>® ® o levell

patternswith one

patternswith two
non " *" component non "

n " *" components

patternswith three
non " *" components

Figure 3: Pruning Directions

accumulated information of a pattern in an event sequence.
We refer to this model as the information model in [18].

The information model is different from the support model.
For a given minimum information gain threshold, let ¥ be
the set of patterns that satisfy this threshold. Under the
support model, in order to find all patterns in ¥ when
event occurrence frequencies are vastly different, the min-
imum support threshold has to be set very low. A major
problem could rise from this: too many patterns discovered.
Table 1 shows a comparison between the support model and
the information model. The example sequences are con-
structed from real traces. In Table 1, two traces (Scour and
IBM traces) are used. Scour is a web search engine that is
specialized for multimedia contents. The web URL of the
Scour search engineer is “http://www.scour.net”. The scour
servers consist of a cluster of machines. Every five minutes,
a distributed sensor records the CPU utilization of every
node and the average is taken as the global CPU utilization
level. We discretize the global CPU utilization level into
events, event A stands for the utilization level between 0
and 0.05, B stands for the utilization level between 0.05 and
0.1, and so on. The scour trace consists of 28800 occurrences
of 19 events (100 days). The event that corresponding to the

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

utilization between 0.95 and 1 does not occur in the trace.
The IBM Intranet traces consist of 160 critical nodes, e.g.,
file servers, routers, etc., in the IBM T. J. Watson Intranet.
Each node issues a message in response of certain situation,
e.g., CPU saturation, router interface down, etc. There are
total 20 types of messages. We treat a certain message from
a particular node as a distinct event, thus there are total 500
distinct events in the trace because a certain type of node
may only send out 4 or 5 types of messages. The IBM In-
tranet trace consists of 10,000 occurrences of the events. By
applying Infomation model on this trace, we found some sta-
tistically significant patterns that are also interesting. For
example, the pattern (node,_fail, *, node, _saturated, *) has
the eighth highest information gain. This pattern means
that a short time after a router (node,) fails, the CPU on
another node (nodey) is saturated. Under a thorough inves-
tigation, we found that node, is a file server and after node,
fails, all requests to some files are sent to nodey, thus causes
the bottleneck.

In order to find the pattern with most information gain, the
support threshold has to be set at 0.000234 and there are
over 16,000 satisfied patterns in one sequence. It is obvi-
ous that the support threshold has to be set very low to

Volume 2, Issue 2 - page 32

Table 1: Support threshold vs. information gain threshold
Scour Trace

Number of Patterns IBM Trace

Satisfied Info. Thresh. | Support Thresh. | Num. of satisfied patterns | Support Thresh. | Num. of satisfied patterns
1 0.000234 16,123 0.0035 637
10 0.000212 16,953 0.0031 711
100 0.000198 17,876 0.0024 987

discover a small number of patterns with high information
gain. This means that the patterns with most information
gain are buried in a sea of patterns with relatively low infor-
mation gain. This could be a large burden for the end user
to distinguish the significant patterns (i.e., patterns with
most information gain) from the rest. In addition, since a
large number of patterns has to be discovered, the support
model may yield an inefficient algorithm.

Although the information gain is a more meaningful met-
ric for the problems addressed previously, it does not pre-
serve the downward closure property (as the support does).
For example, the pattern (ai,a2) may have enough infor-
mation gain while both (a1, *) and (*,a2) do not. We can-
not take advantage of the standard pruning technique (e.g.,
Apriori algorithm) developed for mining association rules
[1; 3; 11] and temporal patterns [2; 7; 13]. Our observa-
tion that the subadditivity property (where the information
gain of (a1,a2) can not exceed the summation of that of
(a1,#*) and (%, a2)) is still preserved by the information gain
motivates us to devise a recursive algorithm as the core of
our pattern discovery tool, InfoMiner [18]. More specifically,
the InfoMiner uses a depth-first, projection-based approach
that starts from the patterns with only one filled position
and then proceeds to more complicated patterns gradually,
and in the mean time utilizes the subadditivity property to
continuously refine the candidate event list associated with
each yet-open position in the pattern. It has been demon-
strated in [17] that the response time of InfoMiner is linearly
proportional to the length of the input sequence.

4. CONCLUSIONS

In this paper, we discuss several recent research advances
for mining patterns in time series data given the presence of
noise. They not only provide more suitable models to mea-
sure interesting patterns but also enable scalable solutions
to mine patterns under the proposed models with respect
to the size of input data. Interested readers are welcome to
refer to the individual papers for further information.

5. REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. Proc. 20th Int. Conf. on Very Large
Data Bases, 487-499, 1994.

[2] R. Agrawal and R. Srikant. Mining Sequential Patterns.
Proc. Int. Conf. on Data Engineering (ICDE), Taipei,
Taiwan, 3-14, March 1995.

[3] R. J. Bayardo Jr. Efficiently mining long patterns from
databases. Proc. ACM SIGMOD Conf. on Management
of Data, 85-93, 1998.

[4] R. Blahut. Principles and Practice of Information The-
ory, Addison-Wesley Publishing Company, 1987.

SIGKDD Explorations. Copyright(©2000 ACM SIGKDD, December 2000.

[5] A. Califano, G. Stolovitzky, and Y. Tu. Analysis of gene
expression microarrays: a combinatorial multivariate ap-
proach, IBM T. J. Watson Research Report, 1999.

[6] R. Durbin, S. Eddy, A. Krough, and G. Mitchison. Bio-
logical Sequence Analysis: Probabilistic Models of Proteins
and Nucleic Acids. Cambridge University Press, 1998.

[7] M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT:
sequential pattern mining with regular expression con-
straints. Proc. Int. Conf. on Very Large Data Bases
(VLDB), 223-234, 1999.

[8] National Center for Biotechnology Information. Avail-
able at “http://www.ncbi.nlm.nih.gov”.

[9] J. Han, W. Gong, and Y. Yin. Mining segment-wise pe-
riodic patterns in time-related databases. Proc. Int. Conf.
on Knowledge Discovery and Data Mining, 214-218, 1998.

[10] J. Han, G. Dong, and Y. Yin. Efficient mining partial
periodic patterns in time series database. Proc. Int. Conf.
on Data Engineering, 106-115, 1999.

[11] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. Proc. ACM SIGMOD Int.
Conf. on Management of Data (SIGMOD), 1-12, 2000.

[12] W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American Sta-
tistical Association, vol 58, 13-30, 1963.

[13] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery
of frequent episodes in event sequences. Data Mining and
Knowledge Discovery, vol. 1, no. 3, 259-289, 1997.

[14] B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic
association rules. Proc. 14th Int. Conf. on Data Engineer-
ing, 412-421, 1998.

[15] S. Ramaswamy, S. Mahajan, and A. Silberschatz. On
the discovery of interesting patterns in association rules.
Proc. 24th Intl. Conf. on Very Large Data Bases (VLDB),
368-379, 1998.

[16] J. Yang, W. Wang, and P. Yu. Mining asynchronous pe-
riodic patterns in time series data. Proc. ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining
(SIGKDD), pp. 275-279, 2000.

[17] J. Yang, W. Yang, and P. Yu. Meta-patterns: reveal-
ing hierarchy of periodic patterns. IBM Research Report,
2001.

[18] J. Yang, W. Yang, and P. Yu. InfoMiner: mining sig-
nificant periodic patterns with rare events in time series
data. IBM Research Report, 2001.

Volume 2, Issue 2 - page 33

