SIGKDD Explorations

Latent Semantic Indexing (LSI) Fails for TREC Collections

Avinash Atreya
Computer Science and Engineering
University of California, San Diego

aatreya@cs.ucsd.edu

ABSTRACT

The aim of latent semantic indexing (LSI) is to uncover the re-
lationships between terms, hidden concepts, and documents. LSI
uses the matrix factorization technique known as singular value de-
composition (SVD). In this paper, we apply LSI to standard bench-
mark collections. We find that LSI yields poor retrieval accuracy
on the TREC 2, 7, 8, and 2004 collections. We believe that the
negative result is robust, because we try more LSI variants than any
previous work. First, we show that using Okapi BM25 weights for
terms in documents improves the performance of LSI. Second, we
derive novel scoring methods that implement the ideas of query ex-
pansion and score regularization in the LSI framework. Third, we
show how to combine the BM25 method with LSI methods. All
proposed methods are evaluated experimentally on the four TREC
collections mentioned above. The experiments show that the new
variants of LSI improve upon previous LSI methods. Neverthe-
less, no way of using LSI achieves a worthwhile improvement in
retrieval accuracy over BM25.

1. INTRODUCTION

The primary goal of an information retrieval system is to identify
the subset of documents potentially most relevant to a given query.
This is typically accomplished via a scoring method, which assigns
each document a number measuring its estimated degree of poten-
tial relevance to the query. Formally, a scoring method is a function
that maps a query to a real-valued score vector of size n, where n
is the number of documents in the collection.

Vector space approach. A query can be represented as a column
vector of length m, where m is the vocabulary size. The ith com-
ponent of the vector counts the occurrences of word ¢ in the query.
This is often called a bag-of-words representation, since the order-
ing of words is ignored. Similarly, a document d can also be repre-
sented as a column vector of length m whose ith entry ¢ counts the
occurrences of term ¢ in the document. Interpreting these vectors
as points in Euclidean space motivates the scoring method called
cosine similarity: cos(q,d) = q - d/|q||d| where |z| is the Eu-
clidean length of a vector x. The value cos(q, d) is the cosine of
the angle between the vectors ¢ and d in m-dimensional space. It
depends only on the directions of ¢ and d, and is independent of
their magnitudes, which is desirable as it avoids assigning higher
scores to longer documents.

Denote by A the m X n matrix whose columns are document vec-
tors as described above. Given A, which is called the term-document

Charles Elkan
Computer Science and Engineering
University of California, San Diego

elkan@cs.ucsd.edu

matrix, the score vector for cosine similarity can be computed as

q" A/ diag(AT A)

where / and |/ are point-wise division and point-wise square root,
the diag operator extracts the diagonal of a matrix, and superscript
T indicates the transpose of a vector or matrix. As we are only
interested in the relative ordering of documents for a fixed query,
normalization by the length of q is not needed.

Latent semantic indexing (LSI). A major drawback of the vector
space approach is that it fails to capture important phenomena in
language usage, including polysemy, which is the ability of a sin-
gle word such as “fire” to have different meanings, and synonymy,
which is the ability of different words such as “firearm” and “gun”
to have similar meanings. From the definition of cosine similarity,
it follows that only terms present in both the query and the docu-
ment contribute to a document’s score. If a query uses the word
“heat,” while a document uses the word “thermal,” that document
is not considered relevant under cosine similarity. In other words,
different word choices can render two document vectors dissimilar
in direction, even though they are similar in meaning.

The key idea of LSI is that documents and words are related via
concepts. The phenomenon of synonymy is captured by permitting
different word choices within a concept, and the phenomenon of
polysemy is captured by permitting a word to have different mean-
ings across concepts. The number of independent dimensions is
the number of concepts k, which is usually much smaller than the
number of words in the vocabulary m.

Mathematically, LSI is based on the singular value decomposition
(SVD) of A [Deerwester et al., 1990]. Let r be the rank of A, so
r < min(m,n). The SVD is the special matrix product

A=Usv7T

where U is an orthonormal m x 7 matrix, S is an r X r diagonal
square matrix, and V' is an orthonormal n X 7 matrix. The rows
of U and V are interpreted as representations of terms and docu-
ments respectively in concept space. The diagonal elements of S
are numbers that are called the singular values of A, sorted in non-
decreasing order. Each value is interpreted as the strength of the
concept in the overall document collection.

LSI truncates the matrices U, S, and V tom x k, k X k and n x
k respectively, where £k < r. The columns of U and V' that are
retained are left unchanged, and the truncated matrices continue to
be orthonormal. The hope is that this reduction in dimensionality
results in eliminating noise while still capturing the most significant
concepts. The truncated matrices are denoted by Uy, Sk, and Vj.
The value of k is called the number of dimensions of LSI. The
matrix Ay = UkSkaT is a low rank approximation of A. Tt is
the closest approximation to A among all matrices of rank k, as

Volume 12, Issue 2

Page 5

SIGKDD Explorations

measured by squared error.
A common way to score documents using LSI uses Ay, instead of
A to compute the score vector for cosine similarity:

q" Ay /\/diag(AT Ay). (1)

While A is typically sparse, Ay is not. Aj can be viewed as a
smoothed representation of A: many terms that have a zero-weight
in A have a non-zero weight in Ay.

Two major obstacles to using LSI on large collections are apparent.
First, for large collections, while A can be represented efficiently
owing to its sparse nature, Ay, cannot be. Second, computing the
SVD of large matrices is expensive. Previous work on using LSI
for ad hoc retrieval on TREC collections, such as [Dumais, 1995],
computes the exact SVD of only a fraction of documents and terms;
the rest are included by a heuristic called folding-in. However,
present day computational power lets us compute the exact SVD
using the entire term-document matrix. The TREC-2 collection for
which we report results is about twice the size of the largest col-
lection used in previous published research on LSI for information
retrieval, according to Table 1 of [Bradford, 2008] (but see also
[Yan et al., 2009]).

Contributions. Before the SVD is computed, the term-document
matrix is typically transformed using a weighting scheme. The idea
is to weight terms based on their importance and discriminative
power. After Section 2 below explains the Okapi BM25 weight-
ing scheme, Section 3 shows how to use this weighting scheme to
improve LSI performance. While using Ay instead of A is one
method to score documents using LSI, several other methods can
be motivated using the properties of Uy, Sk, and V3. Section 4 ex-
plores novel LSI-based scoring methods and relationships between
them. Score vectors from two different scoring methods can be
combined to yield a new score vector, and thereby a new scoring
method. If the two scoring methods have complementary advan-
tages, the combined scoring method may perform better than either
scoring method alone. Section 5 defines scoring methods that lin-
early interpolate other scoring methods. Next, Section 6 explains
the design of our experiments, and Section 7 reports performance
results for different term-weighting schemes and scoring methods.
Section 8 concludes the paper.

2. THE BM25 SCORING METHOD

The so-called Okapi BM25 method [Robertson and Walker, 1994]
is the best currently known vector-based scoring method. It scores
a document d according to the following formula:

Z IDF(g:)

K3

count(qs,d) (k1 + 1)
count(qi,d) + k1(1 —=b+0b-1(d)/L)

Above, ¢; is the i*" query term, k; is a parameter that tunes the
scaling of term frequency, b is a parameter that tunes the scaling
of document length, count(q;, d) is the frequency of term g¢; in d,
I(d) is the length of document d, and L is the average document
length. The factor I DF(t) for term ¢ is

IDF(t) = log(z(—t)nj—tz).—g 0.5)

where n(t) is the number of documents with term ¢ and n is the
total number of documents in the collection.

BM25 weights are a combination of local and global components,
similar to many term frequency (TF) and inverse document fre-
quency (IDF) weighting schemes. Although the underlying moti-
vation is different, BM25 weights can be used computationally in

the same way as weights for terms of other origins. In particular,
we define the matrix A as follows: each entry (¢, j) is the BM25
weight assigned to term ¢; in document d; using the formula

count(t;,d;) (ki + 1)
count(ti,d;) +ki(1 —b+b-1(d;)/L)

A;; = IDF(t;)

where count(t;,d;) is the frequency of term ¢; in d;. Then, the
BM25 score vector can be computed as g7 A. We call the matrix A
just defined the BM25 matrix.

To be precise, this scoring method assigns the same scores as the
standard BM25 formula only if each term in the query occurs ex-
actly once. This assumption usually holds for short queries. A
difference between the BM25 method and cosine similarity is that
the columns of the BM25 matrix are not normalized. A conceptual
reason for this difference is that the BM25 motivation is not geo-
metric. A practical reason is that the parameter b already provides
approximate length normalization.

3. WEIGHTING SCHEMES AND LSI

Weighting schemes are critical to the performance of LSI for at
least two reasons. To see the first reason, consider the case of func-
tion words. These words are likely to occur with many unrelated
terms. It is undesirable to have these unrelated terms appear to be
related via function words. Therefore a weighting scheme should
have the property that terms that co-occur with many others (such
as function words) are down-weighted. A weighting scheme that is
popular in the LSI literature is the log-entropy scheme, where the
weight for term ¢; in document d; is computed as

1+ Zp“ log,, pi) - log(count(t;,d;) + 1)
1

where p;; is an estimate of the probability of occurrence of term
t; in document d; (usually a maximum likelihood estimate). From
the definition it follows that the log-entropy scheme has the desir-
able property that terms that are equally likely to occur in every
document have the smallest weights.

The second reason why weighting schemes are important is that
in LSI the rows of the Uy matrix representing rare terms, which
are often highly discriminative, typically have small norms. This
has a negative impact on LSI retrieval performance and both log-
entropy and traditional IDF schemes fail to address this problem
[Husbands et al., 2005]. Therefore, a second desirable property of
a weighting scheme is that terms with low document frequencies
should be emphasized.

We propose the BM25 weighting scheme as an alternative to log-
entropy for use with LSI. It is evident from the definition of the
IDF factor in BM25 that it has both desirable properties mentioned
above. Indeed, if a term appears in more than half the documents
in a collection, BM25 assigns it a negative weight. While entropy
takes into account the distribution of a term across documents,
BM25 does not. This property seems desirable, as terms that occur
in many documents should be down-weighted regardless of minor
variations in distribution across documents.

4. LSISCORING METHODS

In this section we explain multiple ways to use LSI for scoring
the relevance of documents to queries. Some of these methods are
novel, while others are not. All are well-motivated, so choosing be-
tween them depends on their empirical performance. Where possi-
ble, we identify which methods are seemingly different, but in fact
mathematically identical. Two novel methods reveal that query ex-
pansion and score regularization are related to LSIL.

Volume 12, Issue 2

Page 6

SIGKDD Explorations

As stated earlier, a common way to score documents using LSI is to
use Ay instead of A, as in equation (1). We call this scoring method
s1. One way to interpret s; is to consider Ay, as a smoothed version
of A. Another way is as follows: given a query vector g, its repre-
sentation in concept space can be obtained as ¢’ = qT Uy, where ¢’
is a row vector of length k. A representation of documents in con-
cept space is S V,L. Cosine similarity in concept space between a
query and all documents can then be computed as

s1(q) = (q" Ur)(SkVil)/ diag(ViSEV,T).

The numerator of s} (q) simplifies to ¢© Ax. The denominator of
s1(q) simplifies to

AL Ay = (UkSkaT)T(UkSkaT)
= ViSeUL UpSk Vi = Vi S2ViE.

Because Sy, is a square matrix, ST = Sy, and as Uy, is orthonormal,
UL Uy is the identity matrix Ij,. Therefore s} (¢) equals s1(q).
Alternatively, a query in concept space can be compared directly
to documents in concept space, ignoring the strength of concepts.
Recall that each row of Vj, i.e. each column of VkT, is the rep-
resentation of a document in concept space. This scoring method
is s2:

s2(q) = (¢" Up)Vi! /1) diag(ViViT)).

The s2 method differs from s; by the absence of Sj. Intuitively,
so assigns equal importance to all concepts. One motivation for s,
is that the overall strength of concepts in a collection may not be
relevant to using the specific concepts in a query to find documents
with the same concepts. A second motivation is that Sy is prone
to overfitting. Suppose that the document collection used to define
A is a finite sample from an underlying population. In this case
the large entries in Sj, are guaranteed to be larger than the corre-
sponding true entries, while the small entries are guaranteed to be
too small [Kjems et al., 2001].

Query expansion. Query expansion is the idea that a query can
be clarified without changing its meaning by adding appropriate
terms. Adding appropriate terms enhances the chances of finding
documents which are relevant, but different in word choice. Con-
sider a word similarity matrix W where the entry at (4, j) measures
how similar term ¢; and term ¢; are. W is a square, symmetric
m x m matrix. Given such a W, define ¢ = (1/m)q” W. Each
entry i in ¢” is the weighted average of similarity scores between
term ¢; and g. The scalar factor (1/m) can be omitted as it is con-
stant for a given query, so ¢ can be defined to be g7 W.

A trivial example of such a term-similarity matrix WV is the identity
matrix I,,,, where each term is only similar to itself. Then, ¢” is the
same as ¢” . An example that uses LSI is the matrix U, U} . Recall
that each row of Uy, is a representation of a word in concept space.
Therefore the inner product of two such rows can be interpreted
as a measure of similarity between words. It follows that Uy UL
is an m X m matrix of word similarity scores. This word similar-
ity matrix can be used for query expansion to expand the original
query. The expanded query can then be compared with normalized
documents. We call this method s3:

s3(q) = (¢"UxU) A//diag(AT A).

The s3 method uses a smoothed representation of queries, com-
pared to s1 which uses a smoothed representation of documents.
Several other LSI-based methods turn out to be equivalent to s3.

Volume 12, Issue 2

For instance, using Ay, instead of A in s3 yields
s5(q) = ¢" UnUy Ax/ diag(AT Ay)
= ¢ UL (UF U SWViL [/ diag(VieS2Vi)

= qTUkSkaT/ dzag(VkS]sz)

= q" Ax/\/diag(ViS2Vi) = s1(q)

which is the same as s;.
As another example, we could expand documents using U U, in-
stead of expanding queries. This idea yields

A =ATuuhHT =uUtA
¢ A = ¢"UL UL A.

It turns out to be the same as expanding queries instead of docu-
ments. Similarly, expanding both queries and documents also sim-
plifies to s3.

A variation on s3 is to perform query expansion using a row-normalized
version of the Uy, matrix. This is akin to using cosine similarity be-
tween term vectors in concept space as a measure of term similarity.
Let us denote the row-normalized version of Uy, by Uy, and call this
scoring method s4:

sa(q) = " (UU") A/\/diag(AT A).

After the rows of U} are normalized, it is no longer orthonormal.
Normalization of rows may nevertheless be desirable if similarity
between terms should be independent of the magnitude of their rep-
resentations.

Score regularization. The idea of score regularization is that sim-
ilar documents should have similar scores [Diaz, 2005]. A way to
regularize scores is as follows. For each document, we compute
the regularized score as a weighted average of raw scores assigned
to all other documents, where similarity scores between documents
function as weights. Given a matrix D of similarity scores between
documents, and a vector of raw scores s, the regularized score vec-
toris s’ = (1/n)sD. The scalar factor (1/n) can be omitted with-
out affecting the relative ordering of documents, so the definition
can be just s’ = sD.

An example of such a document similarity matrix is D = Vi, V;T.
Recall that each row of V}, is a representation of a document in
concept space. The inner product of two document vectors in con-
cept space can be interpreted as a measure of similarity between
documents. Then, the matrix Vi VkT is an n X n matrix of docu-
ment similarity scores. Once a score vector is computed, it can be
regularized using V4 V;T. We call this scoring method s5:

s5(q) = (qTA/\/ diag(ATA))VkaT.

Since the division is pointwise, s5 can also be written as

s5(q) = (¢" AVV' /\/diag(AT A)).

Similar to s3, using Ay, instead of A recovers s1 since VkT Vi is the
identity matrix [,,.

Analogous to the normalization of the rows of Uy, in s4, the rows of
Vi can be normalized to yield Vi, yielding cosine similarity in con-
cept space as a measure of document similarity. Note that this nor-

.. . 515 T
malization loses the orthonormal property of V. Using the Vj, V},
matrix to regularize gives the scoring method s¢:

s6(q) = qTA(ViVi) //diag(AT A).

Page 7

SIGKDD Explorations

5. COMBINING SCORING METHODS

Given two scoring methods s and s’, a new scoring method s can
be defined by linear interpolation as

s"(q) = Xs'(q) + (1 — N)s(q)

where 0 < A < 1. We call X the interpolation parameter. As it
is allowed to take the values 0 and 1, it follows that s” performs
at least as well as the better of s and s’, after a parameter search
for \. If the methods s and s” have complementary advantages, for
instance if s performs better on precision and s” performs better on
recall, one can hope s” performs better overall.

Of course, linear interpolation can be applied to any IR scoring
methods [Vogt and Cottrell, 1999]. We investigate here combina-
tions of both cosine similarity and BM25 with multiple LSI meth-
ods. The specific combination of standard LSI and cosine similarity
has been investigated on small collections previously [Kontostathis,
2007]. Cosine similarity and s; can be combined as

Mg A/\/diag(AT A)
XA/ diag(AT A)]

where A can be interpreted as calibrating the extent to which Ay
smooths A. We call this scoring method s1+. The setting A = 1
recovers s1, and the setting A = 0 recovers cosine similarity. Sim-
ilarly, s2 can be combined with cosine similarity to yield scoring
method s, where \ has a similar interpretation to above:

sT(q) = A" Ar/

=q" [N Ax/

diag(AT Ay) +

diag(AT Ap) + (1 -

s3(q) = ¢ NURVA 4/ diag(ViVI) +

When s3 is combined with cosine similarity, we get s3:

s3(q) = A(qTUkUzip)z‘l/\/dmg(ATA)
TA/\/diag AT A)
[)\UkUk + (1= XNIA//diag(AT A)

where A can be interpreted as calibrating the degree of query ex-
pansion. Similarly, s4 can be combined with cosine similarity to
yield s}

YA/ diag(AT A).

When s5 is combined with cosine similarity, we get s3:

sg' (¢9) = /\qTAVkaT/\/diag(ATA)
Nq" A//diag(AT A)
= qTA/\/dzag AT AV +

And, s¢ can be combined with cosine similarity to yield s{ :

st (q) = ¢" A/ \/diag(ATA)AViV " +

The six combination methods above have analogs where BM25 re-
places cosine similarity. In these six analogs, the column normal-
ization factor is omitted for the BM25 component method. For
instance, s;” with BM25 is defined as

si(q) = " U,

(1 -\

(1 - N1

s1(q) = ¢" [Ny /) diag(AT Ar) + (1 — M) A]

with A being the BM25 matrix. For all combination methods, score
vectors are L1 normalized before interpolation.

— \)A/+\/diag(AT A)].

Table 1: Collection statistics

Collection Terms | Documents | Queries
TREC-2 ad hoc 138166 741696 50
TREC-7 ad hoc 128360 528140 50
TREC-8 ad hoc 128360 528140 50

TREC-2004 Robust | 128360 528140 250

6. EXPERIMENTAL DESIGN

The main goal of our experiments is to investigate whether the
new scoring methods described above perform better than tradi-
tional BM25 and LSI. The former is a high-performing baseline
that most published IR methods fail to improve upon [Armstrong
et al., 2009]. The choices include the following: (1) Which test
collections to perform experiments on? (2) Preprocessing: which
fields to include in documents and queries; whether or not to per-
form stemming, stopping, and which algorithms to choose for each;
whether to retain all terms or to eliminate terms with small global
frequencies. (3) LSI choices: which weighting schemes to use, and
whether to normalize the columns (i.e., documents) before SVD.
(4) Parameters: what range and step size to choose for various pa-
rameters: dimensionality k in LSI, k1 and b in BM25, and the linear
interpolation parameter \. (5) Parameter search: what search algo-
rithm to use for parameter search. (6) Performance measure: which
metric of retrieval success to use. (7) Generalization: whether
to perform cross-validation during parameter search; whether to
cross-validate on subsets of queries, or on subsets of corpora.

For (1) we choose the TREC-7 ad hoc, TREC-8 ad hoc, and TREC-
2004 robust test collections as they have the highest frequency of
scores reported for ad hoc retrieval in recent years [Armstrong et al.,
2009]. Note that these three collections consist of the same docu-
ments, but have different topic sets. The TREC-2004 robust topic
set is a superset of both the TREC-7 ad hoc and TREC-8 ad hoc
topic sets; because it has 250 queries it is best for testing whether
differences between scoring methods are significant. Last, we in-
clude the TREC-2 ad hoc collection to verify that the scoring meth-
ods scale to a relatively large collection. Table 1 presents the basic
statistics for each collection.

For (2) we use the Porter stemming algorithm and a standard stop
word list. The term count reported in the table above is after stem-
ming and stopping. We eliminate terms that occur in 5 or fewer
documents. For example, for TREC-2, three quarters of the terms
are eliminated from the vocabulary. We use only the title fields
from topics, following common practice, as our aim is to evalu-
ate performance on short queries similar to those that casual users
would tend to generate. Only the text fields of documents are used.
For (3) we compare log-entropy and BM25 matrices. Informal ex-
periments show that normalizing the columns of log-entropy matri-
ces yields better results, so we do that. Columns of BM25 matrices
are not normalized. For (4) we vary the LSI parameter k from 10
to 300, in steps of 10, the BM25 parameters k1 from 1 to 3 in steps
of 0.1 and b from 0.05 to 1 in steps of 0.05, and the interpolation
parameter A from O to 1 in steps of 0.1. All ranges are inclusive of
end points. For (5) we use grid search.

For (6) we use non-interpolated mean average precision as the per-
formance measure. This is the most often reported performance
measure and is considered stable [Buckley and Voorhees, 2000].
Below, we use the terms “performance” and “MAP” interchange-
ably. Choice (7) is difficult. In the field of IR, the method of cross
validation to find parameters that generalize well is not often used
for the following reasons. The number of queries in a topic set
is often not large enough to permit effective cross validation, and

Volume 12, Issue 2

Page 8

SIGKDD Explorations

Table 2: MAP scores for BM25, cosine similarity with log-entropy
weights, and LSI methods with BM25 weights, on TREC collec-
tions.

TREC-2 | TREC-7 | TREC-8 | TREC-2004
ad hoc ad hoc ad hoc robust
0.2181 0.1897 0.2527 0.2220
BM25 | b=030 | b=0.25 | b=0.40 b=0.40
ki=15 | k1=10 | k1=1.0 k1=1.0
cosine | 0.1037 0.0839 0.1375 0.1138
s1 0.0804 0.0241 0.0529 0.0382
k=270 k=300 k=300 k=300
So 0.0858 0.0281 0.0591 0.0457
k=250 k=300 k=280 k=300
S3 0.0883 0.0265 0.0403 0.0319
k=300 k=300 k=300 k=300
S4 0.0809 0.0238 0.0364 0.0271
k=300 k=300 k =300 k =300
S5 0.0883 0.0265 0.0403 0.0319
k=300 k=300 k =300 k =300
S6 0.0587 0.0273 0.0593 0.0463
k=250 k=300 k =300 k =300

cross validation on a subset of collections may not be desirable as
the assumption that different collections are independently identi-
cally distributed is not meaningful, or valid. In this work, we find
collection-specific parameters that perform best on each query set.
Our primary aim is to compare and contrast different scoring meth-
ods. As we follow the same methodology for all the methods, we
believe that a fair comparison ensues.

7. EXPERIMENTAL RESULTS

Table 2 shows the performance of various scoring methods on TREC
collections. The first two rows of the table report MAP scores for
BM25 and for cosine similarity with log-entropy weights. For the
former method, the best parameter values are shown. It is evident
that BM2S5 outperforms cosine similarity dramatically. Given that
both methods do local and global (TF and IDF) weighting, the dif-
ference in performance suggests that weighting scheme details can
have a major impact.

Table 3 contrasts the performance of various LSI-based scoring
methods using the log-entropy and the BM25 weighting schemes
on two TREC collections. Using BM25 weights is almost always
best. Findings on small collections and on the other two TREC
collections (not shown) are similar.

Performance results for the LSI-based methods s; to s¢ in Table 2
are based on the SVD of A using BM25 weights. These weights
use the b and k; parameters that are optimal for the BM25 method
as shown in the first row of each table. When BM25 is used as
a weighting scheme prior to LSI, the optimal parameters may be
different, but fixed parameters are used for the sake of simplicity.
Table 2 shows that the new LSI methods sometimes outperform the
standard LSI method s;. In particular, method s2, which assigns
the same importance to all concepts, outperforms s; on all four
TREC collections. Unfortunately, all methods based on LSI per-
form far worse than standard BM25, or even cosine similarity, on
TREC collections.

As the results appeared rather surprising at first, we verified the
MAP scores using the TREC evaluation scripts and the Terrier soft-
ware [Ounis et al., 2006]. We also verified that LSI methods per-

Table 3: MAP scores with BM25 versus log-entropy weighting for
LSI-based scoring methods on two TREC collections.

TREC-2 ad hoc TREC-2004 robust

log-entropy | BM25 | log-entropy | BM25

$1 0.0389 0.0804 0.0323 0.0382
k=190 k=270 k=300 k=300

S2 0.0404 0.0858 0.0361 0.0457
k=180 k=250 k=300 k=300

S3 0.0403 0.0883 0.0242 0.0319
k=260 k=300 k=300 k=300

S4 0.0864 0.0809 0.0353 0.0271
k=300 k=300 k=300 k=300

S5 0.0403 0.0883 0.0242 0.0319
k=260 k=300 k=300 k=300

S6 0.0436 0.0587 0.0391 0.0463
k=300 k=250 k=300 k=300

0.06

MAP

.
150 200 250 300 350 400 450 500
K (dimensions of LSI)

!
0 50 100

Figure 1: Mean average precision (MAP) as a function of the di-
mensionality k& of LSI for method s; on the TREC 8 collection.
Results for other variants of LSI and other collections are similar.

form well on small collections, as reported in previous work.

Even though LSI-based methods are inferior by themselves, they
may still be complementary to other methods. Table 4 shows the
performance of combination methods s} to s . For each dataset
and method, the best A and k values are shown. (LSI is not used
when A = 0 is best, so no value for k£ is shown.) The methods
sT, sg‘, and 35+ outperform optimized BM25 on every collection.
The improvements are small and not of practical importance. For
example, for TREC-2 ad hoc and TREC-8, ad hoc s} and s are
about 4% better than optimized BM25. However, these improve-
ments are over a strong baseline, and are comparable to the im-
provements reported for query expansion or language modeling in
previous publications [Armstrong et al., 2009].

In Tables 2 to 4, the MAP values of s3 and ss, or of s; and s;,
are almost identical. This is an interesting finding, because s3 is
based on the idea of query expansion, while s5 is based on the
conceptually different idea of score regularization. We hypothesize
that the algebraic analysis of Section 4 can be extended to explain
this approximate equivalence.

Volume 12, Issue 2

Page 9

1998. In Proceedings of the 18th ACM Conference on Informa-

Table 4: MAP scores for combination methods on TREC collec- tion and Knowledge Management (CIKM), pages 601-610.

tions. LSI-based methods use BM25 weights.
Bradford, R. B. (2008). An empirical study of required dimen-

TREC-2 | TREC-7 | TREC-8 | TREC-2004 sionality for large-scale latent semantic indexing applications.
ad hoc ad hoc ad hoc Robust In Proceedings of the 17th ACM Conference on Information and
0.2181 0.1897 0.2527 0.2220 Knowledge Management (CIKM), pages 153—162.
BM25 | b=030 | b=025 | b=040 b=0.40 . .
ki=15 | k1=10 | k=10 k=10 Buckley, C. a'n‘d Voorhees, E..M. (2000). Evaluating evaluation
02284 0.1927 02628 0.2280 measure stability. In Proceedzr%gs of the 2§rd ACM Conference
sf A=04 A=02 =04 A=03 on Research and Development in Information Retrieval (SIGIR),
k=220 | k=290 | k=140 | k=250 pages 33-40.
0.2287 0.1897 0.2620 0.2264 Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K.,
sy A=0.1 A=0 A=0.1 A=01 and Harshman, R. (1990). Indexing by latent semantic analy-
k=230 k=170 k=130 sis. Journal of the American Society for Information Science,
0.2253 0.1911 0.2571 0.2237 41(6):391-407.
sT A=03 | A=01 | A=02 A=0.1) .)
E=260 | =300 | k=140 k=260 D1az,~ F. (2005). Regularizing ad hoc retrieval scores. .In Pro-
02181 0.1897 03527 02220 ceedings of the 14th ACM Conference on Information and
st A=0 A=0 =0 A=0 Knowledge Management (CIKM), pages 672—679.
0.2253 0.1911 0.2571 0.2237 Dumais, S. T. (1995). Latent semantic indexing (LSI): TREC-
sT A=03 A=0.1 A=02 A=0.1 3 report. In Overview of the Third Text REtrieval Conference,
k=260 | £=300 | k=140 k =260 pages 219-230.
0.2181 0.1897 0.2527 0.2220 i .
sg A=0 A=0 A=0 A=0 Husbands, P., Simon, H. D., and Ding, C. H. Q. (2005). Term

norm distribution and its effects on latent semantic indexing. In-
formation Processing and Management, 41(4):777-787.

Jiang, F. and Littman, M. L. (2000). Approximate dimension
equalization in vector-based information retrieval. In Proceed-

8. DISCUSSION

‘We have not provided an explicit analysis of the statistical signifi- ings of the 17th International Conference on Machine Learning
cance of differences between mean average precision numbers re- (ICML), pages 423-430.

ported above. In a nutshell, most differences are not significant.)

The reason is that most collections have only a small number of Kjems, U., Hansen, L. K., Strother, S. C., et al. (2001). Gen-
queries (50 for TREC 2, 7, and 8), while the average precision eralizable singular value decomposition for ill-posed datasets.
(AP) has high variability across queries. For example, the typi- In Advances in Neural Information Processing Systems (NIPS),
cal standard deviation of AP results on the TREC-8 collection is pages 549-555.

around 0.22, so the 95% confidence interval around an MAP result
is +0.062 [Webber et al., 2008]. The conclusion that most dif-
ferences between methods are not significant is also true of many

Kontostathis, A. (2007). Essential dimensions of latent semantic
indexing (LSI). In Proceedings of the 40th Hawaii International
International Conference on Systems Science (HICSS), pages

other published studies using these standard collections. The dif- 73-80. IEEE Computer Society.

ferences between log-entropy, BM25, and LSI methods above are

statistically reliable. Ounis, 1., Amati, G., Plachouras, V., He, B., Macdonald, C.,
An obvious possible reason why LSI underperforms in the exper- and Lioma, C. (2006). Terrier: A high performance and scal-
iments above is that the required number of dimensions k is large able information retrieval platform. In Proceedings of the 29th
for TREC collections. However, our experiments indicate that this ACM Conference on Research and Development in Information
is not the case. The increase in MAP as k increases is modest for Retrieval (SIGIR), pages 18-24.

all four TREC collections; see Figure 1. For the TREC 2 ad hoc
collection, for the standard LSI scoring method s1, the optimal k
is less than 300. On other collections k values up to 1700 were
tried in previous research [Jiang and Littman, 2000], but they did

Robertson, S. E. and Walker, S. (1994). Some simple effec-
tive approximations to the 2-Poisson model for probabilistic
weighted retrieval. In Proceedings of the 17th ACM Conference
on Research and Development in Information Retrieval (SIGIR),

not yield much improvement. The results in Figure 1 are consistent pages 232-241.

with that finding. The influence of dimensionality on LSI has also

been investigated for large collections of documents, for the pur- Vogt, C. C. and Cottrell, G. W. (1999). Fusion via a linear com-
pose of measuring semantic similarity between words [Bradford, bination of scores. Information Retrieval, 1(3):151-173.

2008]. That paper finds that the optimal dimensionality is different
for different word pairs, but not larger than £ = 500. This conclu-
sion again indicates that the bad performance of LSI is unlikely to
be due to values of £ that are much too small.

Webber, W., Moffat, A., and Zobel, J. (2008). Score standard-
ization for inter-collection comparison of retrieval systems. In
Proceedings of the 31st ACM Conference on Research and De-
velopment in Information Retrieval (SIGIR), pages 51-58.

9. REFERENCES Yan, J., Yan, S., Liu, N., and Chen, Z. (2009). Straightforward

feature selection for scalable latent semantic indexing. In Pro-

Armstrong, T. G., Moffat, A., Webber, W., and Zobel, J. (2009). ceedings of the SIAM International Conference on Data Mining,
Improvements that don’t add up: ad-hoc retrieval results since pages 1159-1170.

SIGKDD Explorations Volume 12, Issue 2 Page 10

