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ABSTRACT

A report is provided for the ACM SIGKDD community
about the 2010 Workshop on Algorithms for Modern Mas-
sive Data Sets (MMDS 2010), its origin in MMDS 2006 and
MMDS 2008, and future directions for this interdisciplinary
research area.

1. INTRODUCTION

The 2010 Workshop on Algorithms for Modern Massive Data
Sets (MMDS 2010) was held at Stanford University, June 15—
18. The goals of MMDS 2010 were (1) to explore novel tech-
niques for modeling and analyzing massive, high-dimensional,
and nonlinearly-structured scientific and Internet data sets;
and (2) to bring together computer scientists, statisticians,
applied mathematicians, and data analysis practitioners to
promote cross-fertilization of ideas. MMDS 2010 followed on
the heels of two previous MMDS workshops. The first meet-
ing, MMDS 2006, addressed the complementary perspec-
tives brought by the numerical linear algebra and theoret-
ical computer science communities to matrix algorithms in
modern informatics applications [1]; and the second, MMDS
2008, explored more generally fundamental algorithmic and
statistical challenges in modern large-scale data analysis [2].

The MMDS 2010 program drew well over 200 participants,
with 40 talks and 13 poster presentations from a wide spec-
trum of researchers in modern large-scale data analysis. This
included both academic researchers as well as a wide spec-
trum of industrial practitioners. As with the previous meet-
ings, MMDS 2010 generated intense interdisciplinary inter-
est and was extremely successful, clearly indicating the de-
sire among many research communities to begin to distill
out and establish the algorithmic and statistical basis for
the analysis of complex large-scale data sets, as well as the
desire to move increasingly-sophisticated theoretical ideas to
the solution of practical problems.

2. SEVERAL RECURRING THEMES

Several themes—recurring melodies, as one participant later
blogged, that played as background music throughout many
of the presentations—emerged over the course of the four
days of the meeting. One major theme was that many mod-
ern data sets of practical interest are better-described by
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(typically sparse and poorly-structured) graphs or matrices
than as dense flat tables. While this may be obvious to
some—after all, both graphs and matrices are mathemati-
cal structures that provide a “sweep spot” between more de-
scriptive flexibility and better computational tractability—
this also poses considerable research and implementational
challenges, given the way that databases have historically
been constructed and the way that supercomputers have
historically been designed. A second major theme was that
computations involving massive data are closely tied to hard-
ware considerations in ways that are very different than
have been encountered historically in scientific computing
and computer science—and this is true both for computa-
tions involving a single machine (recall recent developments
in multicore computing) and for computations run across
many machines (such as in large distributed data centers).

Given that these and other themes were touched upon from
many complementary perspectives and that there was a wide
range of backgrounds among the participants, MMDS 2010
was organized loosely around six hour-long tutorial presen-
tations.

3. LARGE-SCALE INFORMATICS: PROB-
LEMS, METHODS, AND MODELS

On the first day of the workshop, participants heard two
tutorials that addressed computational issues in large-scale
data analysis from two very different perspectives. The first
was by Peter Norvig of Google, and the second was by John
Gilbert of the University of California at Santa Barbara.

Norvig kicked-off the meeting with a tutorial on “Internet-
Scale Data Analysis,” during which he described the prac-
tical problems of running, as well as the enormous poten-
tial of having, a data center so massive that “six-sigma”
events, like cosmic rays, drunken hunters, blasphemous in-
fidels, and shark attacks, are legitimate concerns. At this
size scale, the data can easily consist of billions to trillions
of examples, each of which is described by millions to bil-
lions of features. In most data-intensive Internet applica-
tions, the peak performance of a machine is less important
than the price-performance ratio. Thus, at this size scale,
computations are typically performed on clusters of tens or
hundreds of thousands of relatively-inexpensive commodity-
grade CPUs, carefully organized into hierarchies of servers,
racks, and warehouses, with high-speed connections between
different machines at different levels of the hierarchy. Given
this cluster design, working within a software framework like
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MapReduce that provides stateless, distributed, and parallel
computation has benefits; developing methods to maximize
energy efficiency is increasingly-important; and developing
software protocols to handle ever-present hardware faults
and failures is a must.

Given all of this infrastructure, one can then do impres-
sive things, as large Internet companies such as Google have
demonstrated. Norvig surveyed a range of applications such
as modelling flu trends with search terms, image analysis for
scene completion (removing undesirable parts of an image
and filling in the background with pixels taken from a large
corpus of other images), and using simple models of text to
perform spelling correction. In these and other Web-scale
applications, simpler models trained on more data can often
beat more complex models trained on less data. This can be
surprising for those with experience in small-scale machine
learning, where the curse of dimensionality and overfitting
the data are paramount issues. In Internet-scale data anal-
ysis, though, more data mean different data, and throwing
away even rare events can be a bad idea since much Web
data consists of individually rare but collectively frequent
events.

John Gilbert then provided a complementary perspective
in his tutorial “Combinatorial Scientific Computing: Ex-
perience and Challenges.” Combinatorial Scientific Com-
puting (CSC) is a research area at the interface between
scientific computing and algorithmic computer science; and
an important goal of CSC is the development, application,
and analysis of combinatorial algorithms to enable scientific
and engineering computations. As an example, consider so-
called fill-reducing matrix factorizations that arise in the so-
lution of sparse linear systems, a workhorse for traditional
high-performance scientific computation. “Fill” refers to the
introduction of new non-zero entries into a factor, and an
important component of sparse matrix solvers is an algo-
rithm that attempts to solve the combinatorial problem of
choosing an optimal ordering of the columns and rows of the
initial matrix in order to minimize the fill. Similar combi-
natorial problems arise in scientific problems as diverse as
mesh generation, iterative methods, climate modeling, com-
putational biology, and parallel computing. Throughout his
tutorial, Gilbert focused on two broad challenges—the chal-
lenge of architecture and algorithms, and the challenge of
primitives—in applying CSC methods to large-scale data
analysis.

The “challenge of architecture and algorithms” refers to the
nuts and bolts of getting high-quality implementations to
run rapidly on machines, e.g., given architectural constraints
imposed by communication and memory hierarchy issues or
the existence of multiple processing units on a single chip.
As an example of the impact of architecture on even simple
computations, consider the ubiquitous three-loop algorithm
for multiplying two n x n matrices, A and B: foreach i, j, k,

C(i,j3) = A(i, k) « B(k, 7).

It seems obvious that this algorithm should run in O(n®)
time (and it does in the Random Access Model of compu-
tation); but empirical results demonstrate that the actual
scaling on real machines of this naive algorithm for matrix
multiplication can be closer to O(n®). Theoretical results
in the Uniform Memory Hierarchy model of computation
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explain this scaling behavior, and it is only more sophis-
ticated BLAS-3 GEMM and recursive blocked algorithms
that take into account memory hierarchy issues that run in
O(n?) time.

The “challenge of primitives” refers to the need to develop
algorithmic tools that provide a framework to express con-
cisely a broad scope of computations; that allow program-
ming at the appropriate level of abstraction; and that are ap-
plicable over a wide range of platforms, hiding architecture-
specific details from the users. Historically, linear alge-
bra has served as the “middleware” of scientific comput-
ing. That is, by providing mathematical tools, interactive
environments, and high-quality software libraries, it has pro-
vided an “impedance match” between the theory of continu-
ous physical modeling and the practice of high-performance
hardware implementations. Although there are deep theo-
retical connections between linear algebra and graph theory,
Gilbert noted that it is not clear yet to what extent these
connections can be exploited practically to create an anal-
ogous middleware for very large-scale analytics on graphs
and other discrete data. Perhaps some of the functional-
ity that is currently being added onto the basic MapReduce
framework (and that draws strength from experiences in re-
lational database management or high-performance parallel
scientific computing) will serve this role, but this remains to
be seen.

4. NEWVIEWS ON OLD APPROACHES TO
NETWORKED DATA

Although graphs and networks provide a popular way to
model large-scale data, their use in statistical data analysis
has had a long history. Describing recent developments in
a broader historical context was the subject of tutorials by
Peter Bickel of the University of California at Berkeley and
Sebastiano Vigna of the Universita degli Studi di Milano.

In his tutorial on “Statistical Inference for Networks,” Bickel
described a nonparametric statistical framework for the anal-
ysis of clustering structure in unlabeled networks, as well as
for parametric network models more generally. As back-
ground, recall the basic Erdés-Rényi (ER) random graph
model: given n vertices, connect each pair of vertices with
probability p. If p > log(n)/n, such graphs are “dense” and
fairly regular—due to the high-dimensional phenomenon of
measure concentration, such graphs are fully-connected; they
are expanders (i.e., there do not exist any good cuts, or par-
titions, of them into two or more pieces); and the empirically-
observed degrees are very close to their mean. On the other
hand, for the much less well-studied regime 1/n < p <
log(n)/n, these graphs are very sparse and very irregular—
such graphs are not even fully-connected; and when consid-
ering just the giant component, there are many small but
deep cuts, and empirically-observed degrees can be much
larger than their mean. This lack of large-scale regularity
is also seen in “power law” generalizations of the basic ER
model; it’s signatures are seen empirically in a wide range
of very large social and information networks; and it ren-
ders traditional methods of statistical inference of limited
usefulness for these very large real-world networks.

Bickel considered a class of models applicable to both the
dense/regular and sparse/irregular regimes, but for which
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the assumption of statistical exchangeability holds for the
nodes. This exchangeability assumption provides a regular-
ity such that any undirected random graph whose vertices
are exchangeable can be written as a mixture of “simple”
graphs that can be parametrized by a function A(-,-) of two
arguments. Popular stochastic blockmodels are examples of
parametric models which approximate this class of nonpara-
metric models—the block model with K classes is a simple
exchangeable graph model, and block models can be used to
approximate a general function h. In this framework, Bickel
considered questions of identifiability and consistency; and
he showed that, under assumptions such as that the ex-
pected degree is sufficiently high, it is possible to recover
“ground truth” clusters in this model.

Sebastiano Vigna provided a tutorial on “Spectral Ranking,”
a general umbrella name for techniques that apply the the-
ory of linear functions, e.g., eigenvalues and eigenvectors, to
matrices that do not represent geometric transformations,
but instead represent some other kind of relationship be-
tween entities. For example, the matrix M may be the ad-
jacency matrix of a graph or network, where the entries of
M represent some sort of binary relations between entities.
In this case, a common goal is to use this information to
obtain a meaningful ranking of the entities; and a common
difficulty is that the matrix M may contain “contradictory”
information—e.g., i likes j, and j likes k, but ¢ does not like
k; or ¢ is better than j, j is better than k, but ¢ is not better
than k.

A variant of this was considered by J.R. Seely who, in an
effort to rank children back in 1949, argued that the rank
of a child should be defined recursively as the sum of the
ranks of the children that like him. In modern terminology,
this led to the computation of a dominant left eigenvector of
M (normalized by row to get a stochastic matrix). A dual
variant was considered by T.H. Wei who, in 1952, wanted
to rank sports teams and argued that the score of a team
should be related to the sum of the scores of the teams
it defeated. This led to the computation of a dominant
right eigenvector of M (with no normalization). Since then,
numerous domain-specific considerations led researchers to
propose methods that, in retrospect, are variants of this ba-
sic framework. For example, in 1953, L. Katz was interested
in whether individual 7 endorses or votes for individual j,
and he argued that the importance of ¢ depends on not just
the number of voters, but on the number of the voters’ vot-
ers, etc., with a suitable attenuation « at each step. Since,
if M is a zero/one matrix representing a directed graph, the
i,j entry of M* contains the number of directed paths from
i to j, he was led to compute 130 a"M"™ = 1(I—aM)™".
Similarly, in 1965, C.H. Hubbell was interested in a form of
clustering used by sociologists known as clique identifica-
tion. He argued that on can define a status index r by using
the recursive equation r = v + rM, where v is a “bound-
ary condition” or “initial preference,” and this led him to
compute v 3.0 M" =v(I — M)™1.

n=0

From this broader perspective, the popular PageRank is the
damped spectral ranking of the normalized adjacency matrix
of the web graph; the boundary condition is the so-called
preference vector; and this vector can be used for various
generalizations such as to bias PageRank with respect to
a topic or to generate trust scores. Remarkably, although
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PageRank is one of the most talked-about algorithms ever,
there is no reproducible scientific proof that it works for the
problem of ranking web pages, there is a large body of em-
pirical evidence that it does not work, and it is likely to be
of miniscule importance in today’s ranking algorithms. Nev-
ertheless, partly because the basic ideas underlying spectral
ranking are so intuitive, there are “gazillions” of small vari-
ants that could be (and are still being) introduced regularly
in many areas of machine learning and data analysis. Unfor-
tunately, this is often without reproducible scientific justifi-
cation or careful evaluation of which variants are meaningful
or useful.

5. MATRIX COMPUTATIONS—IN DATA AP-
PLICATIONS

Challenges and tradeoffs in performing matrix computations
in MMDS applications were the subject of the final pair of
tutorials—one by Piotr Indyk of the Massachusetts Insti-
tute of Technology, and one by Petros Drineas of Rensselaer
Polytechnic Institute.

Indyk discussed recent developments in “Sparse Recovery
Using Sparse Matrices.” This problem arises when the data
can be modeled by a vector x that is sparse in some (often
unknown) basis; and it has received attention recently in
areas such as compressive sensing, data stream computing,
and combinatorial group testing. Traditional approaches
first capture the entire signal and then process it for com-
pression, transmission, or storage. Alternatively, one can
obtain a succinct approximate representation by acquiring
a small number of linear measurements of the signal. That
is, if x is an m-vector, the representation is Az, for some
m X n matrix A. Although typically m < n, the matrix
A can be constructed such that one can use a recovery al-
gorithm to obtain a sparse approximation to z. It is often
useful (and sometimes crucial) that the measurement ma-
trix A be sparse, in that it contains very few non-zero ele-
ments per column. For example, sparsity can be exploited
computationally—one can compute the product Az very
quickly if A is sparse. Similarly, in data stream processing,
the time needed to update the sketch Az under an update
A; is proportional to the number of non-zero elements in
the i-th column of A.

Indyk described tradeoffs that arise when designing recovery
schemes to satisfy the tricriterion of short sketches, low al-
gorithmic complexity, and strong recovery guarantees. Ran-
domization has proved to be an important computational
resource, and thus a key issue has been to identify prop-
erties that hold for very sparse random matrices and also
are sufficient to support efficient and accurate recovery al-
gorithms. A key challenge is that, whereas dense random
matrices are fairly homogeneous (e.g., since measure con-
centrates their eigenvalues follow Wigner’s semicircle law),
very sparse random matrices are much less regular. One can
say that a matrix A satisfies the RIP(p, k, €) property if

|2[lp(1 =€) < [[Az]p < [|2||,

holds for any k-sparse vector . (This generalizes the well-
known Restricted Isometry Property from p = 2 to gen-
eral p.) Although very sparse matrices cannot satisfy the
RIP(2,k,€) property, unless k or € is rather large, Indyk
showed that the adjacency matrices of constant-degree ex-
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pander graphs do satisfy this property for p = 1 and that
several previous algorithms generalize to very sparse matri-
ces if this condition is satisfied.

In his tutorial on “Randomized Algorithms in Linear Alge-
bra and Large Data Applications,” Petros Drineas used his
work on DNA single-nucleotide polymorphisms (SNPs) to
illustrate the uses of randomized matrix algorithms in data
analysis. SNPs are sites in the human genome where a non-
negligible fraction of the population has one allele and a non-
negligible fraction has a second allele. Thus, they are of in-
terest in population genetics and personalized medicine. In
addition, they can be naturally represented as a {—1,0,+1}
matrix A, where A;; represents whether the ¢-th individual is
homozygous for the major allele, heterozygous, or homozy-
gous for the minor allele.

While some SNP data sets are rather small, data consisting
of thousands or more of individuals typed at hundreds of
thousands of SNPs are increasingly-common. Size is an issue
since even getting off-the-shelf SVD and QR decomposition
code to run on dense matrices of size, say, 5000 x 500, 000 is
nontrivial on commodity laptops. The challenge is especially
daunting if the computations need to be performed thou-
sands of times in the course of a cross-validation experiment.
Perhaps less obvious is the issue of interpretability—even if
the data clusters well in the span of the top k “eigenSNPs,”
these eigenSNPs cannot be assayed in the lab and they can-
not be easily thought about. Thus, while eigenvector-based
methods for dimensionality reduction are popular among
data analysts, the geneticists were more interested in the k
actual SNPs that were most important.

Drineas described how to address these two challenges—the
“challenge of size” and the “challenge of interpretability” —
in a unified manner. He described a randomized approx-
imation algorithm for choosing the best set of exactly k
columns from an arbitrary matrix. The key structural in-
sight was to choose columns according to an importance
sampling distribution proportional to the diagonal elements
of the projection matrix onto the span of the top k right
singular vectors. These quantities can be computed exactly
by computing a basis for that space, or they can be ap-
proximated more rapidly with more sophisticated methods.
Importantly for interpretability, these quantities are the di-
agonal elements of the so-called “hat matrix,” and thus they
have a natural interpretation in terms of statistical leverage
and diagnostic regression analysis. Importantly for size and
speed, Hadamard-based random projections approximately
uniformize these scores, washing out interesting structure
and providing a basis where simple uniform sampling per-
forms well. This has led in recent years to fast high-quality
numerical implementations of these and related randomized
algorithms.

6. CONCLUSIONS AND FUTURE DIREC-
TIONS

In addition to these tutorial presentations, MMDS partici-
pants heard about and discussed a wide range of theoretical
and practical issues having to do with algorithm develop-
ment and the challenges of working with modern massive
data sets. As with previous MMDS meetings, the presen-
tations from all speakers can be found at the conference
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website, http://mmds.stanford.edu; and as with previous
MMDS meetings, participant feedback made it clear that
there is a lot of interest in MMDS as a developing research
area at the interface between computer science, statistics,
applied mathematics, and scientific and Internet data appli-
cations. So keep an eye out for future MMDSs!
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