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ABSTRACT

This document aims to provide an overview and synopsis
of frugal AI, with a particular focus on its role in promot-
ing cost-effective and sustainable innovation in the context
of limited resources. It discusses the environmental impact
of AI technologies and the importance of optimising AI sys-
tems for efficiency and accessibility. It explains the interface
between AI, sustainability and innovation. In fourteen sec-
tions, it also makes interested readers aware of various re-
search topics related to frugal AI, raises open questions for
further exploration, and provides pointers and references.

1. INTRODUCTION ABOUT THIS DOCU-
MENT

About this document - The objective of this document is
to provide a preliminary synopsis of frugal AI, with a par-
ticular emphasis on its role in fostering cost-effective and
sustainable innovation in the context of limited resources. It
discusses the environmental impact of AI technologies and
the importance of optimising AI systems for efficiency and
accessibility. The authors do not pretend to cover all the as-
pects of frugal AI but give understanding in the intersection
of AI, sustainability, and innovation. The document aims
to raise awareness of interested readers about various re-
lated topics, poses open questions for further exploration in
the field of frugal AI, provides some pointers and references.
The different sections have been written independently so
that the reader can read only one part without reading the
full document. As a result, there is potential redundancy
between some of the sections presented.

Frugal AI is at the intersection of 4 domains: the economy,
the technology, the society, and climate change. The figure
1 below introduces, as a snapshot, the main concepts that
will be detailed in the document.

The document delineates the notion of frugal AI, highlight-
ing its capacity for cost-effective and sustainable innovation
in resource-constrained environments. It emphasises the en-

Figure 1: Frugal AI: what impact and what solutions for the
environment?

vironmental impact of AI technologies and the necessity for
optimising AI systems to reduce their ecological footprint.
The document goes on to explore a variety of strategies for
achieving frugality in AI, including the right usage of AI,
model compression, hardware optimization, and the impor-
tance of resource-aware AI design. The document also poses
a series of research questions to stimulate further investiga-
tion into the implications of frugal AI across economic, so-
cial, and environmental domains.

Introduction - Generative AI, the latest digital revolution,
is transforming the way we use digital technology in our
daily lives and is also highlighting fundamental issues such
as responsibility, safety, and ethics. However, the environ-
mental footprint of digital technology is often overlooked,
even though it already accounts for nearly 4% of global
greenhouse gas emissions. With the rise of artificial intelli-
gence, this footprint will increase, putting pressure on vital
resources such as electricity and water in certain regions of
the world. Faced with this dilemma, the concept of frugal
AI is emerging. It questions the tension between the unbri-
dled development of artificial intelligence and the planetary
limits we keep pushing.

In the past, frugal innovation was a strategy suitable only
for low-income countries where there were severe resource
constraints. However, raising barriers to recent innovation



thinking makes frugal innovation best suited to all levels of
a nation’s development. The word “frugal” is a well-known
definition for being thrifty or economical. But when frugal
modifies innovation, its acronym should be parsed as fol-
lows: functional, robust, user-friendly, growing, affordable,
and local [88].

Frugal Innovation is an opportunity to innovate cost-effecti-
vely and sustainably under resource scarcity. Like the poet
Charles Baudelaire, who said of poetry that “because the
form is constrained, the idea springs forth more intensely”,
we propose to ask ourselves: what innovative ideas are emerg-
ing or will emerge from these constraints?

Outline of this document - Below is a brief roadmap
outlining the contents and contributions of each section:

- Section 2 defines AI systems and their relevance in frugal
innovation. It clarifies what constitutes an AI system and
defines frugal AI, highlighting its focus on efficiency and
resource-conscious solutions. It also explains how AI can
be utilized to create cost-effective solutions in resource-
constrained settings.

- Section 3 discusses the environmental consequences of AI
technologies, including energy consumption, greenhouse
gas emissions and resource consumption. It examines the
ecological impact of generative AI, its resource demands
and the implications of generative AI.

- Section 4 analyzes public perceptions and awareness of
AI, particularly generative AI, and its societal implica-
tions.

- Section 5 explores the economic landscape for AI and
frugal AI, including investment trends and labour market
implications.

- Section 6 discusses the challenges posed by energy and
resource limitations on AI growth.

- Section 7 highlights the importance of selecting appro-
priate AI models based on performance and resource ef-
ficiency.

- Section 8 introduces methods for measuring the environ-
mental impacts of AI throughout its lifecycle.

- Section 9 stresses the need for public education on the
environmental impacts of AI and the principles of frugal
AI.

- Section 10 discusses the importance of establishing stan-
dards for the design and deployment of AI to minimize
environmental impacts.

- Section 11 explores how natural systems can inspire the
design of frugal AI solutions.

- Section 12 examines advancements in hardware that sup-
port frugal AI applications, focusing on energy efficiency
and cost-effectiveness.

- Section 13 reviews various strategies for optimizing AI
models, including model compression and hardware op-
timization.

- Section 14 presents open questions and areas for further
exploration in the field of frugal AI.

This roadmap provides a structured overview of the manu-
script, allowing readers to quickly grasp the key themes and
contributions of each section related to frugal AI.

2. CONTEXT AND DEFINITION

2.1 What is an AI system
Understanding artificial intelligence is the first step towards
understanding the concept of frugal AI. Here are the main
definitions:

• AI system [EU AI Act Article 31] is a machine-based
framework with varying levels of autonomy. It can be
adapted to achieve explicit or implicit goals. The sys-
tem processes the current input data and produces the
outcome result (i.e., detection, prediction, content gen-
eration or recommendation) that can influence physi-
cal or virtual environments.

• AI Expert system [ISO/IEC 229892]: AI system
that accumulates, combines and encapsulates knowl-
edge provided by a human expert or experts in a spe-
cific domain to infer solutions to problems.

• As AI is widely used in social debates, the social def-
inition of AI today takes an important place. Will
Heaven in the MIT Technology Review defines it as
a catch-all word: “AI is a catch-all term for a set of
technologies that make computers do things that are
thought to require intelligence when done by people.”
[98]. We can follow Hubert Guillaud in his attempt to
define AI as the set of techniques that stand between
lab research and widespread usages [91]. In 2025, AI
is identified as LLMs (Large Language Models), but
before this, AI was used to describe image recogni-
tion. Beyond the ambiguity of the term that covers
both a field of computer science, but also techniques
that articulate models on data, Alex Bender and Emily
Hanna also point out that artificial intelligence comes
with “magic” and could be omniscient and all-powerful
[93]. In addition, the human anthropomorphizes the
machine, that is to say, attributes it an intention [60].
This is especially the case for AI methods that use
language models. It is therefore important to educate
populations to keep critical thinking in AI usages, to
avoid replacing prompts for questions and feedback for
answers.

2.2 Defining AI in the context of frugality
Artificial intelligence (AI) in the context of frugal innova-
tion refers to the use of intelligent technologies to develop
cost-effective, efficient, and resource-conscious solutions. AI
enables systems to learn from data, automate processes,
and make informed decisions, often with minimal human
intervention. In frugal innovation, AI is applied to create
solutions that are accessible, affordable, and adaptable to
resource-constrained environments. In essence, frugal inno-
vation seeks to develop high-value solutions using minimal
resources.

By leveraging optimization techniques, AI can function ef-
fectively within the constraints of limited infrastructure, ma-
king it an indispensable tool in contexts where conventional

1https://artificialintelligenceact.eu/article/3/
2https://www.iso.org/fr/standard/74296.html

https://artificialintelligenceact.eu/article/3/
https://www.iso.org/fr/standard/74296.html


approaches may be impractical. As [88] highlights, frugal in-
novation can be significantly enhanced by technological ad-
vancements. Citing [239], Govindan asserts that AI holds a
distinct advantage over other technologies in fostering frugal
innovation. Additionally, Govindan references [224]’s argu-
ment that AI-driven improvements in frugal innovation can
contribute to a company’s growth. These perspectives sup-
port the central question explored in Govindan’s research:
What is the significance of integrating AI into sustainable
frugal innovation?

Despite its potential, the integration of AI into sustainable
frugal innovation presents several challenges. Entrepreneurs
and organizations often face difficulties in aligning AI-driven
solutions with sustainable innovation strategies. As noted
by [88], understanding the critical success factors (CSFs)
for AI implementation is essential for overcoming these bar-
riers. This paper raises two fundamental questions: What
are the common drivers for AI implementation in sustain-
able frugal innovation? and Which of these factors exert the
most significant influence?

Govindan’s study identifies “understanding the concept of
AI” and “level of AI investment” as the two most influen-
tial success factors for AI adoption in sustainable frugal
innovation [88]. These factors are critical in determining
how industries can integrate AI-driven solutions to enhance
their business competitiveness, particularly in times of dis-
ruption [88]. The study suggests that by addressing these
key factors, businesses can maximize AI’s potential in fos-
tering cost-effective, scalable, and sustainable innovation.

To ensure the successful integration of AI into sustainable
frugal innovation, [88] emphasizes the need for targeted stra-
tegies aimed at strengthening these key success factors. The
study highlights that industries must develop specific prac-
tices to facilitate AI adoption. One of the most effective
approaches, according to [88], is providing structured train-
ing for employees and top-level management. This can be
achieved through participation in workshops and seminars,
as well as engaging with technical literature on AI appli-
cations in sustainable frugal innovation. Such initiatives
enhance decision-making by improving organizational un-
derstanding of AI’s role in resource-efficient innovation.

By fostering AI literacy and ensuring strategic investments,
industries can unlock the full potential of AI-driven frugal
innovation. As [88] suggests, a well-informed approach to
AI integration can contribute to long-term sustainability
and resilience, enabling businesses to thrive in increasingly
resource-conscious environments. The ongoing exploration
of AI’s role in frugal innovation will therefore remain criti-
cal for industries seeking to maintain competitiveness while
addressing global sustainability challenges.

2.2.1 Frugal Artificial Intelligence (FAI)
Artificial Intelligence (AI) has become increasingly sophisti-
cated, with machine learning (ML) models achieving higher
accuracy in various applications. However, this progress of-
ten comes at a significant computational and environmental
cost. The development and deployment of AI models re-

quire extensive data preprocessing, substantial computing
resources, considerable energy consumption, and in conse-
quence, CO2 footprint of the training process, raising con-
cerns about sustainability and accessibility [125]. In re-
sponse to these challenges, the concept of Frugal Artificial
Intelligence (FAI) has emerged as a framework aimed at re-
ducing AI’s resource dependency while maintaining its effec-
tiveness. As [125] stated, “Here, frugality can concern (this
list is not exhaustive):

1. Reduction of data size, i.e., minimization of dataset(s)
used in training, while preserving model accuracy.

2. Making AI eco-friendly, by reducing the energy in-
volved in model training and use.

3. Minimization of needed resources, i.e., memory and/or
processing/battery power”

2.2.2 Key principles of FAI

1. Efficiency: Frugal AI solutions prioritize efficiency in
terms of both computation and energy consumption.
This may involve designing algorithms that can run on
inexpensive hardware or optimizing code to minimize
resource usage.

2. Affordability: Frugal AI aims to make AI technologies
accessible to a wide range of users, regardless of their
financial resources. This may involve reducing the cost
of hardware, software, and infrastructure required for
AI implementation.

3. Simplicity: Frugal AI solutions often prioritize simplic-
ity and ease of use over complexity. This may involve
using simpler algorithms or user interfaces that require
less training and technical expertise to operate.

4. Scalability: Frugal AI solutions should be scalable, al-
lowing them to adapt to different contexts and user
needs without significantly increasing costs. This may
involve designing modular architectures that can be
easily expanded or customized as needed.

2.2.3 Ways to make AI frugal
To build frugal AI methods by design, as a society, we should
consider these key points, discussed in more detail in the
next sections:

• understand the impact that AI has on our planet and
society (see Sections 3, 6, 9),

• apply eco-design of AI (see Section 8),

• understand the alternative setups with limited resources
(see Sections 12, 13, and 11),

• conceive our AI for current needs and usages (final
training model and its intermediate steps),

• apply recommendations, specifications and regulations
(see Sections 10, 7).



2.3 Frugality versus efficiency in the context
of artificial intelligence

Artificial intelligence (AI) has evolved through various para-
digms, each offering distinct approaches to solving problems.
As AI technologies advance, two key concepts - frugality and
efficiency - have emerged as critical considerations in both
research and practical applications. Although these terms
may seem similar, they encapsulate different principles in
the design and deployment of AI systems. In this chapter,
we explore these differences in detail.

2.3.1 Defining Efficiency in AI
In the context of AI, efficiency generally refers to the optimal
use of resources to achieve a specific performance goal. Key
aspects include:

1. Computational Efficiency: This involves minimizing
the amount of time, memory, or energy required to
execute an algorithm. Efficient AI systems perform
tasks faster and with fewer computational resources.

2. Algorithmic Efficiency: Here, the focus is on design-
ing algorithms that achieve high accuracy and perfor-
mance while operating within acceptable resource lim-
its. For example, an efficient algorithm might deliver
accuracy similar to that of a more complex one but
with lower computational costs.

3. Operational Efficiency: This can include aspects such
as scalability (the ability to handle increasing amounts
of work) and cost-effectiveness during deployment. In
many cases, efficiency improvements are measured by
the trade-off between output quality and resource in-
put.

In summary, efficiency in AI is largely about optimization -
making sure that every computational resource (whether it
be time, energy, or memory) is used to its fullest potential
to achieve the desired outcomes.

2.3.2 Understanding Frugality in AI
While efficiency focuses on optimal resource utilization, fru-
gality embodies a broader philosophy. It goes beyond mere
optimization to encompass the design of AI systems that are
inherently resource-conscious from the outset. Key charac-
teristics of frugality include:

1. Minimalism in Design: Frugal AI systems are built
with the principle of “less is more.” This means they
are designed to function effectively with minimal re-
sources, avoiding unnecessary complexity.

2. Accessibility and Affordability: Frugality emphasizes
creating AI solutions that are accessible in resource-
constrained environments. This is particularly impor-
tant for applications in developing regions or for orga-
nizations with limited budgets.

3. Sustainable Innovation: Frugal AI takes into account
long-term sustainability. It aims to reduce environ-
mental impacts by minimizing energy consumption and
promoting the use of available resources wisely.

4. Context-Aware Development: In frugal innovation, the
design process begins with a clear understanding of the

specific resource constraints and needs of the target en-
vironment. This can lead to novel, context-specific ap-
proaches that differ from traditional, resource-intensive
AI models.

Thus, while efficiency is about optimizing existing processes,
frugality is a proactive strategy. It involves designing full AI
systems to operate under strict resource constraints, often
resulting in solutions that are both cost-effective and sus-
tainable.

2.3.3 Terminology: Frugality, Efficiency, and Related
Concepts

In the literature, several terms are used interchangeably to
describe aspects of resource management in AI. Understand-
ing these terms can help clarify the distinction between fru-
gality and efficiency:

1. Lean AI: Borrowed from lean manufacturing princi-
ples, lean AI emphasizes minimizing waste and unnec-
essary complexity. This concept aligns closely with
frugality, as it promotes the development of stream-
lined, purpose-built systems.

2. Sustainable AI: Sustainable AI focuses on reducing the
environmental footprint of AI systems, including en-
ergy consumption and electronic waste. This concept
is an important aspect of frugality, though it also over-
laps with efficiency when considering operational costs.

3. Green AI*: The term Green AI [194] refers3 to AI
research that yields novel results without increasing
computational cost, and ideally reducing it. Whereas
Red AI has resulted in rapidly escalating computa-
tional (and thus carbon) costs, Green AI has the oppo-
site effect. If measures of efficiency are widely accepted
as important evaluation metrics for research alongside
accuracy, then researchers will have the option of fo-
cusing on the efficiency of their models with a positive
impact on both the environment and inclusiveness.

4. Responsible AI*: Responsible Artificial Intelligence
(Responsible AI) is an approach4 to developing, assess-
ing, and deploying AI systems in a safe, trustworthy,
and ethical way and promoting positive outcome.

* Note: These terms are very commonly used, although they
are not really defined in the standards.

2.3.4 Distinguishing Frugality from Efficiency in AI
While these terms share common ground, they differ in scope
and emphasis. They represent different approaches:

1. Focus and Intent:

• Efficiency focuses on optimizing performance met-
rics (such as speed, accuracy, and energy usage)
within a given framework. The goal is to maxi-
mize output for any fixed level of resource input.

3Subsequently, the term has evolved in meaning and some-
times also refers to AIs designed to optimise environmental
impact.
4Sometimes positioned differently in French (the right solu-
tion for the right need) mainly because of the difference in
meaning of the word “responsible” in English and “responsi-
ble” in French.



• Frugality emphasizes a minimalistic design phi-
losophy. It starts with the assumption that re-
sources are scarce and seeks to develop solutions
that are inherently low-cost and sustainable, rather
than simply optimizing existing processes.

2. Design Versus Optimization:

• Efficiency improvements are often applied as op-
timizations to existing systems, such as refining
algorithms or reducing computational overhead.

• Frugal innovation involves rethinking the sys-
tem from the ground up, incorporating resource
constraints into the design process itself. This can
lead to entirely new approaches that differ from
traditional methods.

3. Context and Application:

• Efficiency is a universal goal across many fields
of AI, regardless of the operating environment.

• Frugality is particularly relevant in contexts whe-
re resource limitations are a fundamental con-
straint, such as in developing regions or in ap-
plications with strict energy budgets. Frugal AI
is not just about doing more with less, but about
designing accessible and sustainable methods over
the long term.

In essence, while both concepts value resource conservation,
efficiency is about doing things better, and frugality is about
doing things differently, with a focus on simplicity, accessi-
bility, and sustainability.

3. WHAT IS THE ENVIRONMENTAL FOOT-
PRINT OF AI

In 2023, greenhouse Gas (GHG) emissions due to the digital
domain represented nearly 4% of the global GHG emissions.
Shortly, this contribution will be doubled due to IA expan-
sion. One knows that AI is water and power-greedy at least,
which gives it a major role in the GHG emissions increase of
the digital sector. Here is an overview of the environmental
impact of IA.

3.1 Overview of AI’s Environmental Impact
AI technologies span across a vast landscape of use cases and
models, ranging from simple regressors to large reasoning
models. It is, as such, natural that their impact has a vast
range across use cases. [68] has shown that the consumption
of AI use cases ranges from 3.46 × 10−8 kWh for a tabular
model to 9.58 × 10−2 kWh for a large agentic model. This
gap in consumption in inference leads to vast differences in
impacts, and where in the lifecycle they happen, with larger
models having a much higher impact at inference time. This
growth has heavily impacted data centers, US data centers
produced 105 million tons CO2eq in the past year with a
carbon intensity 48% higher than the national average [90].
Their impact is not limited to CO2 and key environmental
indicators include:

• Green House Gas (GHG) emissions. The energy used
to run the servers and build the server components

emits GHG. Those GHG emissions are measured as an
equivalent mass of CO2: for any gas, it is the equiv-
alent mass of CO2 that has the same global warming
potential as the mass of that gas, it is measured in
kgCO2eq.

• Abiotic Resources Consumption. These are the metal-
lic and mineral resources needed to manufacture all
the hardware to run AI and store the data. The de-
pletion of resources is measured as the equivalent mass
of antimony.

• Water consumption. Water is mainly consumed during
the hardware manufacturing process and during server
runs to cool them.

3.2 Generative AI’s Ecological Impact
Generative AI exacerbates the environmental footprint of
digital technologies across all life-cycle stages (manufactur-
ing, distribution, use, and disposal). It consumes more elec-
tricity and resources than traditional AI tasks:

• Energy Consumption: AI’s energy footprint depends
on factors like data center location, energy mix, model
complexity, and training duration. The growing de-
mand for AI also stresses power grid infrastructure,
with transformer supply struggling to meet demand.[66]
US data centers already consume more than 4% of US
demand [90], a figure expected to rise sharply.

• Water Consumption: AI systems consume water for
cooling servers and generating electricity. For exam-
ple, 20-50 ChatGPT requests use 500 ml of water. By
2027, AI-related water demand could reach 6.6 billion
cubic meters annually. Water usage varies by location,
with some data centers being more water-efficient than
others. [182]

• Pollution and Biodiversity: Data center construction
and operation contribute to habitat destruction and
biodiversity loss. Concrete, a key material in DCs, is
a major source of GHG emissions and requires signifi-
cant amounts of sand, leading to environmental degra-
dation. [180]

• Electronic Chips: Manufacturing chips for AI systems
is resource-intensive, involving rare metals, pure wa-
ter, and energy. Embedded AI, which processes data
locally on devices, offers a more sustainable alternative
by reducing reliance on cloud infrastructure. [243]

3.3 Rebound Effects and Potential Benefits
AI’s ease of use can lead to rebound effects, where increased
usage offsets environmental benefits. For example, AI can
optimize fossil fuel extraction, inadvertently increasing CO2

emissions. Additionally, the demand for new digital infras-
tructure and consumer attraction to innovation accelerates
resource consumption and obsolescence.

However, AI also holds potential for reducing environmental
footprints [149]:

• Directly: AI can monitor air quality, optimize agricul-
ture, and simulate climate scenarios.

• Indirectly: AI improves energy efficiency in transporta-
tion, building management, and energy distribution.



4. USAGE PERCEPTIONS OF AI
Developing a frugal artificial intelligence is a matter of tech-
nical optimization but also of choice on the informed use
of artificial intelligence, case by case. Artificial intelligence
should only be used in cases where it is the best technique
to use (compared to the others) but also because the in-
tended use is useful, beneficial, expected by the society in
which it is deployed and because the adverse effects of this
use would be minimized and less than the beneficial effects.
To enable this parsimonious and essential use of artificial in-
telligence, we propose to look at how artificial intelligence is
perceived by public opinion by taking an interest in surveys
that measure the awareness and use of generative artificial
intelligence in France. The expectations, benefits, or fears
that respondents highlight will then be discussed. Finally,
we will study how the debate is articulated in French society.

4.1 The concept of artificial intelligence is well
known in public opinion

The analysis is mainly based on four general quantitative
studies [79; 80; 69; 78] and an open consultation with French
citizens to suggest ideas for a beneficial use of artificial in-
telligence5 [147].

The results of the studies may differ quite widely, but it is
possible to see that there is a strong awareness of the concept
of artificial intelligence and generative artificial intelligence,
although this is a very technical subject. And a strong cu-
riosity led the French people to try these tools.

On the other hand, these studies do not allow for the dis-
section of their understanding of artificial intelligence. It
should also be noted that all studies are conducted online6.

The following tables summarize the answers of different stud-
ies on two questions: Do you know generative artificial in-
telligence, and have you already used these tools?

4.1.1 Awareness of generative artificial intelligence
A huge awareness of generative AI, even if what hides behind
this awareness cannot be analysed with those studies (see
Table 1).

4.1.2 Use of generative AI tools
Awareness is not only a theoretical one, as more and more
persons try these tools. However the gap between awareness
and usage is still huge (see Table 2).

4.2 A growing media presence, but still below
the major topics of society

The presence of the subject in the media sphere has grown
strongly in recent years, however, it is necessary to rela-
tivize the place that the subject occupies. Indeed, a 10-year
5This citizen consultation - What are your ideas for shaping
AI to serve the public good – was conducted by Make.org for
Sciences Po, AIandSociety Institute (ENS-PSL), The Future
Society, CNum, as part of preparatory work for the Artificial
Intelligence Action Summit, held in Paris in February 2025.
6The methods of collection for the Viavoice study are not
specified.

Study Question Results Comments
Viavoice
for
SSII
(Febru-
ary
2024)

Question asked
without any
explanation

65%
Yes

Institute comment:
“65% of the French have
already heard about
generative artificial
intelligence, a notoriety
that remains, however
little built, only 22% of
the French see very well
what it is”

IFOP
for
Talan
(May
2024)

With explana-
tion7

78%
Yes

Institute comment:
“Generative AI is gain-
ing notoriety among
the general public (78%
have already heard of it
this year compared to
71% in May 2023)”

Ipsos
for
CESI
(Jan-
uary
2025)

Question: Do
you know gener-
ative AI tools?

88%
Yes

Table 1: Synthesise of studies results on awareness

Study Question Results
Viavoice
for SSII
(February
2024)

Question: have you ever used a
generative artificial intelligence so-
lution?

17% Yes
for personal
purpose -
19% Yes for
professional
purpose

IFOP for
Talan
(May
2024)

Question: do you personally use
generative AI tools

25% Yes

Ipsos for
CESI
(January
2025)

Question: do you use generative
AI tools?

39% Yes

IFOP for
Orange
- Socio-
vision
(2024)

Question: Have you ever asked
some questions to a generative AI?

48% Yes

Table 2: Synthesis of studies results on use

analysis of the place of the subject in traditional media8 (see
Figure 2) shows that while artificial intelligence is mentioned
more and more often, and especially since the introduction
of ChatGPT on the market, this presence remains relatively
modest compared to other topics identified as concerns of
the French people, such as immigration, climate change or
purchasing power.

4.3 What are the usages of generative AI?
8Analysis from database ina[63] on the keywords “artificial
intelligence”, “climate”; “purchasing power”, and “immigra-
tion”. The media analysed are: JT (Arte, France 2, France 3,
M6, TF1), continuous information channels (6h-0h range of
BFM TV, CNews, LCI, franceinfo, iTele), radio stations (6-
10h range of Europe 1, France Culture, France Info, France
Inter, RMC, RTL, Sud Radio). Occurrences are counted as
the number of rounds in which the word was detected at
least once by the IA. For example, if a word is said twice by
the same person without being cut off by another person,
that word will be counted once. To compensate for the dis-
parity of time slots between media, the absolute values were
indexed by taking the value of the immigration theme in
2015 on each type of medium as a base 100. An arithmetic
average of the indices was then made.



Figure 2: Topics mentioned in French media

As AI is a social definition regarding the latest technology
on the market (see Section 2), studies in 2024/2025 focus on
generative AI.

Beyond the awareness of the word and the concept or use,
studies allow us to identify what is the social acceptability
of artificial intelligence itself and its uses. The Sociovison
study details the perceived usefulness of generative artifi-
cial intelligence tools. Two-thirds of the people who asked
questions to AI find it useful, and the younger they are, the
more urban and high-income, the more useful the use of AI
is considered to be. In the professional field or for students,
the use of generative AI also seems to be beneficial. With
the idea of an assistant that saves time for low-added-value
tasks or summarizing and synthesizing information. The
Ipsos-CESI study adds translation to these most common
uses. Other uses are emerging (for almost one-third of the
people using AI in their trade): acquiring or compensating
for a lack of skills or even making decisions.

AI is mostly seen as a human assistant, but with a signifi-
cant impact on society.

4.4 Benefits and threats: a clear apprehension
by respondents

There is no mention in the studies of the environmental im-
pact of artificial intelligence, either by energy consumption,
by the construction of data centers, or by the manufacture
of machines. This theme is not offered to respondents. This
makes it invisible. And since it is not proposed, it is not
commented on, and the question does not feed into public
debate. It is a general problem of the digital world whose
environmental impact is not very visible.

However, the citizen consultation (Make.org) identifies 5%
of proposals to raise awareness and reduce the environmental
impact of artificial intelligence. The proposals are around
weighing up the benefits in terms of the environmental dam-
age caused. Artificial intelligence can also be used to mon-
itor and thus prevent the risk of disasters or environmental
degradation.

Also, the benefits and threats associated with the deploy-
ment of artificial intelligence are more related to societal
impacts. The themes concerning the benefits and threats of
artificial intelligence are fairly homogeneous between stud-

ies. As these mainly deal with generative artificial intelli-
gence, they focus on this part of the technology. The quan-
titative surveys propose categories to people who vote on
a Likert scale, according to whether they agree with this
theme and its formulation. However, the open consultation
on behalf of Sciences Po, by make.org, allows spontaneous
themes to emerge; It should be noted that they are close to
the themes assisted by quantitative studies.

The expected benefits are of several orders. First of all,
we have seen above a benefit to be assisted to perform tasks
with low added value in their personal (Viavoice) and profes-
sional (Viavoice, Sociovision) lives, and synthesize the infor-
mation received in their professional life (Sociovision). But
also, get advice or help to solve a problem as a customer
(SocioVision).

Security benefits are also seen: either to obtain reliable data
(the first reported benefit for respondents of the SocioVision
study) or to secure navigation (by blocking malicious con-
tent). Moreover, a more specific study on the use of artifi-
cial intelligence for the French administration shows that it
is mainly expected in the sectors of Defence, security and
surveillance (44%,) to strengthen the fight against social
and tax fraud (51%), public security, and crime prevention
(45%).

The respondents of the SocioVision study, expect as a ben-
efit to have access to reliable information; notwithstanding
do they fear not having access to this reliable infor-
mation any more (75% - this is the highest percentage
among the different countries tested9 in this study, to note
that none goes below 61%, except China, to 45%). This
concern is also major in the ViaVoice study for SII (83%)
as the Ipsos-Cesi study (49%)10. The latter also identifies
a risk of loss of discrimination between what is real or gen-
erated by AI (43%) and even the use of false or unreliable
data. Among the risks of using AI by the administration,
respondents from the Ifop/Acteurs public study point to the
risk of error of these AI.

The second threat, very strongly identified, is that of the
decrease in contacts between people (SocioVision), the de-
humanization of social relations either from a general
point of view (ViaVoice) or in relations with the adminis-
tration (Ifop/ Acteurs Publics).

This nuanced vision of the integration of artificial intelli-
gence in different areas of personal and professional life leads
respondents to prefer a deployment framed by regulation en-

9Germany, Spain, Poland, United Kingdom, USA, China,
Morocco, Egypt

10The rates are very different between the ViaVoice study
where the themes of concern identified are all approved by a
range between 63% and 83% of respondents (the question is:
in the future, Do you fear the rise of artificial intelligence?
Do you think that they do not allow you to tell the difference
between true and false in terms of information?) and the
Ipsos Cesi study, in which no concern concerns more than
49% of respondents (the question is: In your opinion, what
are the main risks associated with the use of generative AI?
among the proposals: The spread of false information (fake
news). It is not specified how many choices respondents
could make.



acted by public authorities. This is the case for 86% of the
French respondents in the SocioVision study (this rate is
similar in all the countries tested and ranges from 78% in
Germany to 90% in China. Note that the Americans ap-
prove of the need for regulation at 80%). The team11 an-
alyzing the citizen consultation on Make.org explains this
request: “Participants reject any form of AI solutionism
and uncontrolled deployments. Participants call for robust
governance frameworks, both at the local and international
levels, to safeguard their rights and protect human agency.
They are divided about unchecked deployments of AI sys-
tems and reject the idea of leaving key decisions to private
companies”.

4.5 A nuanced debate on the part of civil soci-
ety, and polarized by actors in the field

Section 2 of this document shows that artificial intelligence
remains a vague and ambiguous concept. Using this notion
to feed the public debate erases technical expertise to put
questions on the overall functioning of society. This has two
implications for public debate.

First of all, it facilitates the inclusion of the citizen in
the debate. The analysis of citizen consultation in France
for the Action for AI summit, early 2025, allowed a first
debate (approval/ rejection of proposals). The results show
that it is possible to have a fairly measured debate. For ex-
ample, proposals under the “Stop the AI” theme, which is
a clear-cut position, are controversial and received approval
and rejection votes in roughly equal proportions12.

The second consequence is the counterpart of this conflation.
Indeed, the actors of AI and especially the entrepreneurs of
the Silicon Valley rely on the credibility that their knowl-
edge of the subject gives them to take very global positions
on the future, such as the ones quoted by Heaven [99]:

• Marc Andreessen: “This has the potential to make life
much better [...] I think it’s honestly a layup.

• Altman: “I hate to sound like a utopic tech bro here,
but the increase in quality of life that AI can deliver
is extraordinary.”

• Pichai: “AI is the most profound technology that hu-
manity is working on. More profound than fire.”.

11Constance de Leusse, AI & Sociéty Institute (ENS-PSL)
and SciencesPo Tech & Global Affairs Innovation Hub; Nico-
las Moës, The Future Society; Axel Dauchez, Make.org;
Jean Cattan, National Digital Council; Caroline Jeanmaire,
The Future Society; Tereza Zoumpalova, The Future Soci-
ety; Alexis Prokopiev, Make.org;Marthe Nagels, Make.org;
Victor Laymand, Make.org; Pierre Noro, SciencesPo Tech
& Global Affairs Innovation Hub; Mai Lynn Miller Nguyen,
The Future Society; Niki Iliadis, The Future Society; Jules
Kuhn, Make.org

12This consultation is not representative of the opinion of the
French population; it does not involve interviewees on each
proposal or a representative sample, but people who have
voluntarily joined the consultation, Draft suggestions and,
on the other hand, evaluate the agreement or rejection of
other suggestions made. The proposals judged are not ex-
haustive: everyone chooses those on which he or she decides.
Over 11,000 people participated.

Making artificial intelligence a total tool highlights potential
apocalyptic risks for humanity. And focus the reflection on
these existential risks instead of facilitating a calm debate
that would help to understand what companies want to build
as a future with this technology, causes opposition between
“accelerationists” (to accelerate deployment, seek it with
the conviction that the benefits will always be greater than
the disadvantages) and the “catastrophists” (demanding a
halt (or a moratorium) in the face of incalculable and exis-
tential risks for humanity).

Thus, this opposition prevents us from truly thinking about
what AI is doing to societies. Charlie Wazel is a journalist
who investigated how the actors of the Silicon Valley (here
around OpenAI) present their work on artificial intelligence.
His article, published in July 2024 in The Atlantic, is enti-
tled “AI has become a technology of faith”. He writes:
“In this framework, the AI people become something like
evangelists for a technology rooted in faith: Judge us not by
what you see, but by what we imagine [218]” .

This prevents us from thinking about the concrete prob-
lems that are already there, and that the hope of the future
cannot be sufficient to sweep away [94]. This also allows
established actors to thwart regulatory projects: “Thus, the
big tech players are readily in favour of a desire for regula-
tion that would focus on the apocalyptic risks for humanity,
coming from the innovations of “frontier” and less on their
own model [30]”.

4.6 A polarization of the debate that is detri-
mental to thinking

Many risks are well identified by citizens (see the perception
of risks in the various studies, described above), but some
are invisible because they are not proposed to respondents
and therefore not taken into account in the analyses. These
include the environmental consequences of these technolo-
gies (see chapter 3) or the work of people who feed artificial
intelligence or correct it [159].

The citizen consultation organized for the AI Action Sum-
mit allowed respondents to contribute to the debate. On
the other hand, in the context described of a vague notion,
totalizing or even considered as magical that oscillates be-
tween vital necessity and apocalypse, the use of surveys to
measure public perception is part of a process to work on
social acceptability and not on democratic reflection on the
subject of artificial intelligence.

The presentations made in the studies or their analyses show
that artificial intelligence is obvious, which prevents us from
thinking about it. This is what Julien Falgas and Pascal
Robert describe in The Conversation, taking up their con-
cept of “unthought of the digital [75]”. The studies that have
been taken up at the beginning of this chapter are part of
this vision of an obvious, the progress that constitutes arti-
ficial intelligence, and on the necessity that all “start”. The
words used in the texts are directed to this objective.

• In the SocioVision study, the issue described that mo-
tivates the questions around artificial intelligence is:
“the issue: putting generative AI at the service of
progress for all.”



• Similarly, the IFOP-Talan study comments on the re-
sults as follows13:

– Generative AI is gaining notoriety,
– Their use remains minority but is making pro-

gress.
– Generative AI seems to be more democratized

in working life.

• ViaVoice, for SII, comments on the results as follows:
ViaVoice for SII: “ Artificial intelligence solutions ap-
preciated by insiders” and “due to this still poorly
knowledge, the rise of artificial intelligences worries
the majority of French people”

• Finally, EY draws up recommendations for public sec-
tor actors, based on the study conducted by the Ifop)
with the following assumption: “If there is no longer
any need to demonstrate the value of adopt-
ing AI in the public sector, it is important to
understand what are the key success factors to
have it adopted” . The recommendations detail ways
to build public confidence. The first is acculturation,
the next two are more technical, and finally, the last
targets the necessary regulation.

These various quotations are intended to show that the vo-
cabulary used by those who animate the debate is already
marked by the solutions they wish to push. And as the critic
Guy Marcus, a champion of generative models but promoter
of more diverse artificial intelligence: “Neural network peo-
ple have this hammer, and now everything is a nail” says
Marcus[99].

This section aims to understand the perception of artificial
intelligence in public opinion through quantitative studies
(surveys) and propose a critical reading. Indeed, survey-
ing is not participation or debate. Then, the experts re-
appropriate the opinions expressed to propose policies that
allow, as we have just seen, finding the best ways to deploy
artificial intelligence without necessarily questioning soci-
ety’s expectations and taking the risk of not analysing the
consequences of this deployment globally (forgetting precar-
ious workers and the environment, for example). But work-
ing with the public and civil society to shape the intended
use of artificial intelligence, rather than making it a matter
for experts, could only be beneficial in taking seriously the
skills of people who will be affected by this technology. In-
deed, as suggested by the make.org consultation team: “The
public opinion demonstrates a sophisticated understanding
of AI. Participants are numerous and demonstrate nuanced
and diverse opinions of AI’s potential and risks. Despite
the technical nature of the matter, the level of awareness
validates the importance of involving the public and civil
society in the governance of AI.

13highlights are from the author

5. ECONOMIC FORECASTS: AI AND FRU-
GAL AI

5.1 Preamble - Context
AI has become a central pillar of economic transformation.
However, the debate between energy-intensive AI models,
and more efficient FAI (ie Frugal Artificial Intelligence) ap-
proaches continues to shape investment strategies, adoption
trends, and operational costs. Let’s examine the economic
outlook for both AI paradigms in the next five years, ana-
lyzing supply and demand dynamics, labour market impli-
cations, and the way time-to-market constraints contribute
to bolster the not-always relevant all-LLM trend.

5.2 The Supply Side
The implementation of FAI depends largely on the economic
conditions affecting AI services. This includes factors such
as industry investments, profitability expectations, market
consolidation, pricing strategies, and resource constraints.

5.2.1 Industry Investment
On the ground of profitability, the AI industry has witnessed
significant capital inflows, yet many leading AI firms are op-
erating at a significant loss to gain market share. OpenAI
epitomizes this situation, reportedly spending near $700,000
per day to run ChatGPT [73], at least over a certain pe-
riod. Profitability horizons remain thereby uncertain due to
high operational costs. The recent arrival of allegedly far
more efficient challengers such as DeepSeek [134] brings in
this landscape its own share of extra uncertainty. This ex-
ceptionally competitive environment leads actors to deploy
unusual efforts of persuasion to depict AI-based services as
an inexorable necessity calling for fast adoption.

Furthermore, given the enormous cost of developing and
running LLMs, market consolidation is expected in the com-
ing years [67]. Larger tech firms are acquiring AI startups to
integrate new technologies quickly. This trend may be log-
ically expected to continue in the coming years as smaller
firms struggle to compete with industry giants. But some of
the latter may still have to prove they don’t stand on feet
of clay, when cheaper competitors burst in the place.

5.2.2 Resource Constraints
Eventually, the constraint on resources can become a piv-
otal issue for the supply side. AI models require vast com-
putational resources, particularly GPUs and energy. The
demand for AI data center capacity is expected to triple by
2030 [89]. This could create bottlenecks that impact pricing
and access to AI services, potentially increasing demand for
more energy-efficient alternatives (depending on the case,
cheaper SLMs or -wherever applicable- pure FAI with no
generative capacities).

5.3 The Demand Side
The adoption of AI services varies among professionals and
the general public. While demand is growing, key barri-
ers include cost concerns, model reliability, and integration
challenges.



5.3.1 Professional Adoption Trends
Regarding trends of the professional segment, enterprise adop-
tion of AI is accelerating, with surveys indicating that 65%
of companies now use generative AI regularly [52]. However,
this adoption copes with two impedimenta. First, LLMs, be-
cause of explainability and/or latency issues, simply cannot
suit every industrial or educational need, even where they
are theoretically relevant. Second, the cost of running LLMs
without enough selectivity may sometimes turn into OPEX
explosions and encourage businesses to seek more efficient
alternatives. The way arbitration may take place will be
discussed in sections below.

5.3.2 Consumer Adoption Trends
For the consumer side, AI applications have grown rapidly,
with ChatGPT reaching 100 million users within two months
of launch [105]. Despite this, cost pressures and the intro-
duction of subscription fees may affect long-term consumer
adoption, especially in case of an economic downturn in-
duced by both Chinese [132] and American [192] contexts.

5.3.3 Cost-Effectiveness and Reliability
LLMs provide unparalleled flexibility but at a high cost per
inference [107]. FAI, when applicable (namely, when the
output does not call for a generative approach implying a
“decoding” part), offers an alternative with not only lower
operational expenses but sometimes greater accuracy and
shorter latency, making it attractive at different regards,
and especially, but not only, for enterprises with budget con-
straints.

5.4 AI vs Human
The economic impact of AI on the workforce is a crucial
consideration. While AI enhances productivity, concerns
over job displacement persist.

5.4.1 Workforce Displacement
On the one hand, AI automation is projected to replace
approximately 300 million full-time jobs worldwide [120] -
not to mention the prominent example of the Qingdao Port,
already close to be an unmanned site fully automated by
a mix of AI technologies and 5G networks, achieving con-
tinuous records of performance [238]. On the other hand,
new roles in AI development, oversight, and management
are expected to emerge. The medium-term horizon of this
Schumpeterian scheme is at this stage highly unpredictable,
given its political “unthought” and the plausible limitations
coming from energy and natural resources.

5.4.2 Human Competitive Advantages
Despite AI advancements, human expertise remains critical
in areas requiring emotional intelligence, strategic planning,
and interpersonal communication. Yet, creativity should no
longer be perceived as a human turf but rather as a bat-
tlefield with local victories [124], perennial or not. That
said, not ignoring the emerging “reasoning” capacities of
cutting-edge LLMs, human induction is probably not im-
mediately threatened on the short term, especially when it
applies to the perception and the understanding of reality.
Galileo stated the law of uniform motion in purely counter-
factual reasoning, without any statistical arsenal, and more-

over never having been able to produce the experimental
vacuum. A constrained world may sharply foster these cog-
nitive abilities.

The IT sector stresses a specific set of questions. Will soft-
ware development as-we-know-it steadily disappear, as fore-
tells Nvidia CEO [51]? In an “infinite world”, the question
has its share of legitimacy, except probably for technolog-
ical or military processes constituting an existential issue.
By the end of the decade, will data science skills experience
similar shifts, with 80% of machine learning tasks likely to
be automated [48]? Likewise, such assumptions - partly re-
lying on the progress of “AutoML” services that epitomize
an energy-intensive philosophy, will have to be updated in
the light of energy reality and the subsequent trade-offs.

5.5 Conception vs. Run Costs
A key distinction in IT economics lies in the difference be-
tween the conception phase and the operational (run) phase.

5.5.1 Generative AI Accelerating Conception
Gen-AI significantly reduces the time required for ideation
and prototyping across industries. For example, product
designers can rapidly iterate concepts using AI-generated
mock-ups. In numerous situations, Gen-AI can also deliver
a dramatically easy implementation of functions-as-a-service
(FaaS). Indeed, if N-tier architectures enjoyed a great com-
fort of conception with interface definition frameworks dur-
ing the last decade (e.g. OpenAPI), micro-services, per se,
can be now easily implemented with Gen-AI integrated so-
lutions [122] or through basic software craftsmanship (e.g.,
prompting for structured JSON objects).

5.5.2 Run-Time Costs
However, magic has its drawbacks. Operating LLMs incurs
significant computational and energy costs. Studies show
that for specific non-generative tasks (e.g. natural language
classification) where FAI or vanilla algorithmics can pretend
to compete with, and sometimes outperform, LLMs, the
latter can have an energy consumption significantly higher
[152] (with, thereby, similarly higher carbon emissions).

Hopefully, the combination of optimization techniques like
cascades, approximation, and prompt adaptation can the-
oretically save a significant percentage of energy in eligible
situations [144]. Are organizations, though, always in the
practical conditions to spend resources on such efficiency
improvements? The answer is not self-evident as long as we
live in a world of cheap and abundant energy, and where
the relationship to time is a predominant determinant of
economic competition.

5.5.3 Naive Time-To-Market (TTM) pattern
The development cycle of a software feature is often TTM-
driven due to the competition for the early conquest of the
largest market share. When (and only when) the foreseen
functionality is deemed eligible to frugal algorithmics, comes
most often a dilemma. Develop an accurate, reliable, tailor-
made FAI-based solution (calling for labelled data, model
training, high skills and a longer conception phase)? Or im-
plement, faster and probably with a reduced development
team, a Gen-AI-based approach? The two scenarios are rep-



resented hereafter with their respective timeline (see Figure
3). Let’s underline that the schemes are purely didactic, so
as to depict the cost distribution likely to happen in each
situation. First, they do not reflect real figures. Second,
they do not embark specific conception approaches like fine-
tuning or similar techniques.

Figure 3: The timeline dilemma: launching faster or build-
ing smarter

In short, with irrelevant Gen-AI usage involved in runtime
platforms, costs can rise faster than expected, putting prod-
uct pricing at risk. This may be yet justified by a strategic
effort to secure early adoption by a market segment.
In those cases, though, appears a challenge of project gover-
nance: to apply a proactive and frequent assessment of the
relevance of Gen-AI usages at runtime. A modular software
architecture (e.g. micro-services) with well-documented in-
terfaces is the cornerstone of such continuous improvement
efforts.

5.6 Summary
In the next five years, economic factors will drive AI adop-
tion choices. While LLMs continue to enable groundbreak-
ing innovation, their high operational costs may push or-
ganizations toward FAI solutions, especially in the present
geopolitical turmoil, where several clues indicate the closer
proximity of a world governed by finitude, especially at the
turn of the next decade [203]. A balanced approach, lever-
aging the strengths of both paradigms, is likely to define the
future of AI deployment.

6. PLANET BOUNDARIES - ON AI DEVEL-
OPMENT AND ENERGY RESOURCES

6.1 Growth in the use of AI
Most observers estimate [86] that growth in usage and as-
sociated sales will follow an exponential curve, at least by
2030. This growth is underpinned by a particularly rapid
rate of adoption of AI compared with that observed for
other, equally recent technologies, in which it is indeed gen-
erative AI that is driving this growth in AI usage [155].

This growth requires the associated material equipment in
the form of servers providing the necessary memory, power,
and computing speed [178], the manufacture of which im-
plies the availability of natural resources (water, metals,
etc.), and the operation of which implies the availability of
the required electricity.

6.2 Electricity resources required to operate
the AI, needed to sustain AI growth

6.2.1 Evaluation to 2030
The growth in electricity required to operate the correspond-
ing data centers will follow a more moderate curve than that
of AI usage, thanks to energy and architecture gains [112].
However, these (linear) gains will not compensate for the
growth in electricity needed to keep pace with demand.

The United States [24] has estimated a projection of data
center consumption between 2024 and 2028, according to
two scenarios (high and low), which include, on the one
hand, the growth in storage and computing power, and on
the other hand, these energy gains.

Between 2010 and 2022, global electricity production grew
by 50%. Between 2022 and 2040, it should grow by 100%,
i.e. double, and then increase by a further 25% between
2040 and 2050 [176], corresponding to linear growth from
2010 to 2050.

An admittedly simple model (approximation of the growth
in energy requirements by an exponential curve, see Figure
4) based on the data for 2024 and 2028 mentioned above for
the USA, scaled up to the global level (the USA consumed
17.3% of the world’s electricity in 2023 [113]), of electricity
consumption by data centers, using an average scenario built
as the average of the two scenarios (LC and HC), leads to
the Table 3.

2020 2021 2022 2023 2024 2025
0.863 1.056 1.2813 1.6 1.979 2.455
2026 2027 2028 2029 2030
3.052 3.805 4.754 5.951 7.464

Table 3: % electricity production used by data centers,
Medium case

AI is not specifically discerned in this assessment, however,
it has been noted that the preponderant (exponential) part
of this growth is linked to the use of generative AI. Accord-
ing to this modelling estimate, by 2030 7.5% of the world’s
electricity production would be consumed by data centers.

6.2.2 Evaluation beyond 2030
The use of data for projections beyond 2030 is risky, due
to the scarcity of data and the high degree of uncertainty
surrounding the evolution of other resources likely to sup-
port growth (metals in particular), as well as the growth in
computing requirements linked to AI. Unsurprisingly, how-
ever, it would reveal a divergence between (linear) growth
in electricity production and (exponential) growth in data
center consumption (See Figure 5).



Figure 4: % World’s electricity production used by data
centers

Figure 5: World’s electricity production & data centers con-
sumption

In particular, all the electricity generated in the world would
be consumed for data center needs as early as 2041.

6.3 Analysis

6.3.1 Conflicts over electricity use
Electricity, a limiting factor for AI growth - The
growth of AI, through the surplus electricity it requires, will
be confronted with its need for energy as a limiting factor in
this growth. At the same time, it will intensify conflicts over
the use of the electricity produced, which, barring a tech-
nological breakthrough (controlled nuclear fusion in partic-
ular, under research since the 1960s), is unlikely to be able
to sustain this development. This raises the question of ar-
bitration between different economic players regarding the
availability of electrical energy resources.

The position of economic players and the search for
new sources of electricity generation - The conditions
for maintaining economic activity will then be, in addition
to the control of one’s own production processes, that of
access to electrical energy. This analysis explains why some
major electricity consumers are already seeking to secure
their electricity supplies, in particular by:

• privatizing production centers (e.g. units in conven-
tional nuclear power plants [202]);

• deploying their own means of production (solarization)
[43] ;

• investing in, or forming partnerships with, innovative
power generation facilities such as nuclear Small Mod-
ular Reactors (SMRs), which can be adapted to keep
pace with the growth of a data center [198].

From this observation, we can also see that the economic
activities that will best be able to maintain themselves over
the long term will be those that have secured their electricity
supplies, either through direct control of their own electricity
production facilities, or through a certain financial capacity
by going to the electricity financial markets.

6.3.2 Focus on France
Between 2035 and 2045, about half of France’s current nu-
clear power generation capacity will no longer be available.
Nuclear power plants, built in comparable years under the
auspices of the Messmer Plan, are located on water-stressed
rivers, and most of them will not be able to be maintained
beyond 50 years [81].

7. USE THE RIGHT AI FOR THE RIGHT
NEED AT THE RIGHT TIME

7.1 Preamble - Life cycle of an AI system
The life cycle of an AI system is similar to the old one named
“life cycle of data mining project” [135]. In this section we
are interested in Lifecycle Assessment (LCA) [126] which
is a systematic approach to evaluate the environmental im-
pacts of a product or system throughout its entire life cy-
cle14. As for data mining, the AI lifecycle encompasses the
complete process of developing and deploying artificial in-
telligence systems. It starts with data collection and moves
through stages such as data preprocessing, model training,
evaluation, deployment, and ongoing monitoring and main-
tenance. For more details on standardization see Section 10.

Due to the Life cycle of an AI system, here is a list of
the costs that prevent the AI from being frugal15 (a non-
exhaustive list): (i) Development Costs (ii) Data Costs (iii)
Infrastructure Costs (iv) Training Costs or retraining cost
(v) Inference cost (vi) Maintenance Costs (vii) Compliance
Costs (viii) Deployment Costs (iX) Support Costs, etc. These
costs can accumulate and impact the overall frugality of an
AI system, and the reader may find more details in recent
publications as for example: [225]. The cost to pay is the
addition of these costs (and some of them have to be paid
at every use of a given model as for example the inference
cost). Contrary to some publications, the cost to pay is not

14We do not study AI-enhanced LCA models which try to
improve the precision and depth of environmental impact
assessments [21].

15We do not define frugality here, see section 2. But we can
think in this section that total costs can have a minimum
value given a task to be solved and an ROI to be achieved.
In this sense, the idea is to try to get as close as possible to
this value.



only the three steps: training, deployment, and production.
We encourage considering the sum of all these costs and not
only part of them (for example fine-tuning16 of the exist-
ing model only reduces one of the costs (the training cost)).
Even when only the model has to be updated, potentially
updating the model is an investment decision which, as in
the financial markets, should only be taken if a certain re-
turn on investment is expected [245] and frugality should be
taken into account.

Another point in this period is the use of large models (Gen-
erative AI, large deep neural networks, etc.). It could be
interesting to keep in mind that “old models”17 particularly
on Tabular data or Time series remains quite interesting
in terms of performances (see the example below in section
7.3).

The list of tasks that could be performed with AI is very
large (classification, regression, etc). Many of them are cur-
rently not frugally solved by large models. Indeed, one of the
key points in frugality is finding the right inflection point be-
tween performance and frugality (all the cost to pay), which
is the focus of the next subsection.

7.2 Finding the right inflection point
Finding the right inflection point between performance and
frugality indicators in AI models is critical to maximizing
efficiency, accessibility, and ethical considerations, while still
achieving satisfactory levels of performance. Balancing these
factors can lead to more sustainable and impactful AI solu-
tions. There are many arguments in favour of finding the
right tipping point18, but here are a few of the more obvious
ones:

• Resource efficiency:

– Cost reduction: Energy-efficient models require
less computing power and memory, resulting in
lower operating costs.

– Environmental impact: Reducing resource con-
sumption can reduce the carbon footprint associ-
ated with training and deploying AI models.

• Scalability:

– Broader accessibility: More efficient models can
be deployed in resource-constrained environments,
making AI accessible to a wider audience.

– Faster deployment: More efficient models can be
trained and deployed faster, allowing rapid itera-
tion and adaptation.

• Optimized Performance:

– Diminishing returns: At a certain point, increas-
ing model complexity yields minimal performance
gains. Identifying the tipping point helps avoid
unnecessary complexity.

16See Section 14.2 for a definition of fine-tuning
17We mean by ‘no large models’ as for example Linear Re-
gression, K-nearest neighbours, Random Forest [33], Cat-
boost [177], Khiops [29], etc. or even signal processing for
time series as, for example, exponential smoothing, Arima,
etc. [31]

18This can also be seen in terms of simplification gains.

– Robustness: Simpler models can sometimes gen-
eralize better to unseen data, reducing the risk of
overfitting.

• User Experience:

– Latency reduction: Frugal models often result in
faster inference times, improving the user experi-
ence in real-time applications.

– Ease of integration: Less complex models can be
more easily integrated into existing systems and
workflows.

• Ethical Considerations

– Fairness and transparency: Simpler models can
be more interpretable, making it easier to under-
stand the decisions made by AI systems and pro-
moting fairness.

– Bias mitigation: Frugal models can reduce the
risk of embedding biases that can result from overly
complex architectures.

• Innovation and experimentation: Encouraging creativ-
ity: A focus on frugality can inspire innovative ap-
proaches to problem solving, leading to novel solutions
that may not rely on heavy computational resources.

• This list is not exhaustive, of course, and we can add
costs that are sometimes ‘hidden’, such as increasing
the skills of teams, integrating an additional data sci-
entist into the project team, etc.).

One way to find this trade-off is to use benchmarking [61],
which plays a crucial role in the development of frugal AI by
improving efficiency and adaptability. The results of bench-
marking AI methods help to develop more frugal AI in sev-
eral ways. Firstly, it is possible to identify efficient meth-
ods, since benchmarks enable comparing the performance
of different AI methods, highlighting those that offer the
best value for money in terms of the resources used. Sec-
ondly, it is possible to optimize resources: through analysis
of the results, researchers (i.e. users) can identify algorithms
that require less data or computing power, thus favouring
lighter solutions. They also provide a consistent framework
to evaluate AI models, ensuring comparability across dif-
ferent approaches (standardization). They help identify the
most efficient algorithms for specific tasks, guiding resource
allocation (performance metrics). They encourage sharing
of best practices and datasets, fostering innovation in frugal
AI solutions (community Collaboration).

Note: The aim of benchmark results is not to systemati-
cally compare solutions (by repeating a lot of experiments),
but to build up a set of skills that will enable an appropri-
ate selection to be made. The question is therefore “how
can companies that do not have data scientists build up this
knowledge” (or companies that have qualified data scientists
but who are overloaded with work and therefore cannot re-
spond to all requests, etc.).

7.3 Illustration on sentiment analysis
As far as we know, there is no universal method for finding
the right tipping point. Modestly, however, we can mention
one that makes sense at the start of a data science project:
(i) define the performance criterion for the project; (ii) define
the value of this criterion (perhaps in the form of a return



on investment (ROI)); (iii) use a rule, an AI, etc., that is
simple at the start and then, if the value of the criterion is
not reached, make the AI more complex; (iv) stop as soon as
the value of the criterion is reached or when the sum of the
costs becomes too great (or the return on investment cannot
be achieved or the cost of achieving it will be too high).

This is illustrated in Figure 6: In the purple case, if the re-
turn on investment in terms of performance is achieved with
P1, there is no reason to make the AI more complex and pay
additional costs. In the green case, the same performance
can be achieved for two different costs. It is therefore very
interesting to start by using an AI producing cost C1 and
then stop. The worst case is where using an AI produces a
higher overall cost with poorer performance (not illustrated
in the figure).

This last scenario is well presented in [153]. In this report
a classification task is designed on text (sentiment analysis)
using a Support Vector Machine (SVM) [57] or three Large
Language Model (LLM)19. For this given classification task
we may observe that the biggest LLM energy consumptions
for inference are they are several orders of magnitude higher
than a standard SVM for a comparable (or lower) accuracy.

Figure 6: Illustration of different tradeoffs between perfor-
mances and costs

8. ASSESSMENT OF ENVIRONMENTAL
FOOTPRINT OF AI

8.1 Life Cycle Assessment
To reduce the environmental impacts of AI, those impacts
need to be identified and measured [18]. Methods relying on
Life Cycle Assessment (LCA) (see Figure 7), as defined by
ISO 14040 and 14044 standards, have been proposed in [146].
Impacts exist throughout the life cycle.
The variables that influence the environmental footprint of
AI, discussed in detail in Section 3, must be kept as low as
possible throughout the AI life cycle. This section focuses
mainly on machine learning aspects rather than symbolic AI
(see, e.g. [83] for a symbolic AI definition and its relation to
machine learning), except for some tools given in the latter
case.

19(BERT fine-tuned on the problem to solve, Llamma and
BERT prompted to solve the problem)

The life cycle of machine learning AI systems [64] consists
mainly of:

• Collecting, storing, and preprocessing data,

• Training and assessing models with the previously col-
lected data,

• Running the best models in applications.

It should be noted that these steps are not fully sequential
and may be interleaved, e.g., new data may be collected
while running the system to train new models.

8.2 Energy consumption: challenges
Today, there are three major research challenges linked with
energy consumption in AI:

• Defining unified measures for energy consumption of
various algorithms.

• Evolving measures sideways with the emergence of new
AI methods.

• Determining correlations between measurable variables
(e.g., energy consumption, carbon footprint, green-
house gas) and major political and industrial efforts.

To reduce the energy consumption of AI training and in-
ference, it is critical to develop a common measurement
framework that includes a complete system, as well as a per-
component energy evaluation. The objective is to identify
components prone to optimization and compare different al-
gorithms.
Today, there is no unified tool that evaluates these steps for
all use cases, usages, and data types. Recent research efforts
provide training and inference evaluations of ML methods,
see [187], [209] and references within.

8.3 Energy Consumption Measurements
To evaluate the energy consumption of machine learning
functions and/or hardware components, one needs to de-
fine the software and hardware use case characteristics and
appropriate measures associated with them. There are three
categories of measurements:

• External power meter (EPM) measurements of hard-
ware components.

• Energy profiling of physical components and/or algo-
rithms (e.g., estimation of energy consumption based
on calculus-related hardware or software variables).

• Measurements of built-in components or sensors of spe-
cific manufacturer solutions (e.g., CPU, GPU, or sev-
eral hardware components).

The EPM is a baseline method for evaluating energy con-
sumption. It is used to evaluate virtual [119] or physical
systems (from integrated circuits [27] on top of specialized
sensors, measurements of systems [185] by wall outlets, to-
wards clouds [6] or large-scale data centers [170]). How-
ever, all three measurement categories have their drawbacks.
For example, EPM suffers from an inability to provide the
fine-grained energy assessment of methods and tools, and is
costly at scale [8].



Figure 7: AI System life cycle

8.4 Greenhouse Gas Emissions Measurement
For the moment, regarding AI, Orange’s internal studies
have focused on Greenhouse Gas Emissions (GHG). Other
variable impacts will be evaluated in the future with the
same methodology when data becomes available.

8.4.1 Source of GHG Emissions
Following [146], several sources of emissions can be identi-
fied:

• Embodied emissions: the emissions associated to the
production of hardware for training/inference and data
storage.

• Power Consumption: the emissions due to power con-
sumption. Electric energy consumption is used to es-
timate greenhouse gas emissions by Eq.(1):

GHGe = Ci × E, (1)

where E is the consumed energy in kWh, Ci is the car-
bon intensity of electricity production in kgCO2eq/kWh
and GHGe are the GHG emissions in kgCO2eq. Ci is
highly dependent on the energetic mix. Measuring the
consumption of an AI model is, however tricky as they
are executed in large computing clusters. As such, it
requires additional hypotheses depending on the tool
used to make the initial measurement, for example:

– If an EPM is used at node level, at least PUE
(Power Usage Effectiveness: the ratio between the
energy consumed by the whole datacenter and the
energy consumed by computing equipment [148])
needs to be taken into account to get an approx-
imation of the node in the datacenter, then an-
other approximation is needed to narrow it to the
model code.

– If a code tracker such as Code Carbon [59] is used,
then both the idle consumption of the infrastruc-
ture, which is the energy consumed by computing
nodes when no specific computation is running
on (the energy correspond to the operating sys-
tem run), and the PUE should be factored in to
reflect both infrastructure inefficiencies and po-
tential under-use of computing nodes.

– If GPU consumption alone was estimated (either
through GPU-Hours, or FLOPS calculators such
as LLMCarbon), then per [146] it only represents
dynamic power consumption and an extra effort
must be done to estimate the idle consumption

and the infrastructure (network, storage, cooling,
building, etc.) consumption in order to have a
better estimate of the model consumption.

8.4.2 Tools
Different software tools are available to measure or estimate
GHG emissions, mainly direct emissions due to power con-
sumption during training and inference. These tools pro-
vide power consumption and convert it to GHG emissions
as in Equation (1) using estimates of the carbon intensity.
Power consumption measurements with software tools are
not straightforward, and differences in power as measured
by physical and software tools can occur, see [115].
These software tools may be generic for broad software de-
velopment, or specified for a given programming language or
machine learning approaches, such as deep learning or large
language models (LLMs).
Here are examples of such tools:

• Code Carbon: Code Carbon is a Python library that
reports CPU, GPU, and RAM consumption [59]. For
CPU, on Linux, it relies on Intel and AMD Processors
on Running Average Power Limit (RAPL). In Intel ar-
chitectures, measurements are retrieved from registers
storing physical power measures, while in AMD, they
are estimates from a set of events from the core pro-
cessor, IOs [115]. For GPU, only NVIDIA boards are
handled, relying on NVIDIA Management (NVML) li-
brary. For RAM, a simple rule of thumb is used: 3W
are accounted for per 8GB.

• ML CO2 Impact: Machine Learning CO2 Impact pro-
vides estimates of GHG emissions resulting from the
power consumption of specific hardwares (GPUs and
CPUs), using their Thermal Design Power (TDP), which
gives an upper bound on the power consumption, and
the duration of usage. It also takes into account the
cloud provider and location of the cloud to estimate
the carbon intensity of the electricity, assuming that
the cloud energy supplier belongs to the same location
as the cloud) [129].

• ecologits: Ecologits provides estimates of electricity
consumption, GHG emissions, abiotic resources deple-
tion, and primary energy consumption for LLMs infer-
ence. Electricity consumption is estimated for a given
model and a given number of tokens. It takes into
account an estimated number of GPUs needed to per-
form inference. It is assumed that the computing node
is an AWS cloud instance with 8 NVIDIA A100 with

https://codecarbon.io/
https://developer.nvidia.com/management-library-nvml
https://mlco2.github.io/impact/
https://huggingface.co/spaces/genai-impact/ecologits-calculator


80GB of memory GPUs. The electricity consumption
also takes into account the idle power consumption
by applying a PUE of 1.2. GHG emission estimates
account for both energy consumption and embodied
emissions.

All these tools, even those that perform measurements while
running training or inference, rely on estimations, particu-
larly on electricity and carbon intensity. The latter two are
highly dependent on the electricity provider, the time of the
day, of the year, and on estimates of the carbon footprint of
hardware and a hardware life expectancy. However, these
tools are useful for providing an order of magnitude. If the
same tool is used in an appropriate condition, it can be used
to compare several hardware setups, machine learning mod-
els, and algorithms, and to assess the improvements that are
implemented to decrease the carbon footprint.

In addition to those tools, cloud providers monitor the car-
bon footprint of the whole service of embedding AI compo-
nents. Those measures are also relevant for assessing the
carbon footprint of a full service, but do not provide the
specific impact of AI components.

There are a variety of tools, measures, and procedures. The
appropriate one must be chosen, depending on whether one
wants to compute the impacts of the complete system or to
deep dive into a specific component to decrease its impact.
In the latter case, care must be taken to ensure that de-
creasing its impact does not increase the impact of another
component.

9. ACCULTURATION
There is a considerable amount of work to be completed
to progress beyond the initial group of individuals who are
aware of and comprehend the subject. Since the release
of generative artificial intelligence tools such as ChatGPT,
a significant proportion of the population has become ac-
customed to using these tools, unfortunately, without being
aware of their environmental impact. It is important that
“how to design frugal AI, how to be aware of AI costs” is
brought to the attention of the public, albeit with the un-
derstanding that this will require a significant investment of
effort to educate and popularise it.
Acculturation to environmental impacts should be central to
the implementation of Frugal AI principles, aiming to raise
awareness and provide actionable tools for all stakeholders
(citizens, employees, students, decision-makers, politicians,
etc.).
Best practices in eco-design for AI should be integrated into
existing development processes within organizations to en-
hance effectiveness.
The success factors for transforming organizations towards
sustainability are numerous. However, it is often easier to
align implementation with co-benefits such as cost reduc-
tion, stakeholder engagement, and highlighting positive im-
pacts on the economy, environment, and society.

Here are the main Best Practices recommendations
for going toward a frugal AI (see the standardization afnor
for frugal AI) :

• Challenge the necessity and identify potential neg-

ative environmental impacts (both direct and indirect)
in advance. To involve decision-makers in taking ac-
count of the challenges of sustainability and AI, (The
Climate Change AI) association is catalysing impactful
work at the intersection of climate change and machine
learning, with a dedicated section for decision-makers.

• Define an appropriate and frugal solution, pri-
oritizing traditional AI over generative AI. Select the
model with the least impact that meets the needs in all
cases. (The AI energy score), a joint initiative between
Hugging Face and Salesforce, is a dashboard that iden-
tifies the model that consumes the least energy to per-
form a task.

• Measure environmental emissions throughout the pro-
ject’s entire lifecycle and share the results. To be at
the cutting edge of these issues, you should follow the
work of PhD Sasha Luccioni, or look at the progress
of the initiative launched during the AI action summit
for a global observatory on AI and energy (link...).

• Propose continuous improvements, such as limit-
ing functionalities to essential needs, optimizing mod-
els, and reducing data used for (re)training.

• Consider circularity: reuse materials and avoid new
purchases. It is noted that 45% of environmental im-
pacts are found in data centers (Numerique quel im-
pact environmental en-2025).

• For GenAI solution, optimize inferences and train
users on prompts (fewer prompts lead to lower carbon
emissions). There are comparators such as compare.ia,
which makes users aware of the art of prompting and
developing their critical faculties concerning the results
obtained and energy costs.

To go further, it is recommended that these eco-design prin-
ciples be combined with the principles of ethics and respon-
sibility in order to promote a systemic view of impacts. Here
is a reference that tends towards this approach, led by the
French Institute of Digital Responsibility.

10. STANDARDIZATIONS
International standards are showing a willingness to provide
a framework for the design and deployment of artificial intel-
ligence (AI) throughout the entire lifecycle. A first approach
has been structuring with the arrival of the specification on
Frugal AI lead by AFNOR, the French organism for the stan-
dardization (see: “A benchmark for measuring and reducing
the environmental impact of AI”) and the French Govern-
ment (see: Digital ecological footprint: standardization of
frugal AI).

AI as part of a digital service or a product can already rely
on existing robust standards (e.g., GHG Protocol, ISO/IEC
on datacenters and software systems, the environmental as-
sessment of products and services proposed by the ITU,
etc.). To assess the environmental impact of digital ser-
vices, the current standards use as references the ITU-T
L.1480 “Enabling the Net Zero transition: Assessing how the
use of information and communication technology solutions
impact greenhouse gas emissions of other sectors”, the ISO

https://telechargement.afnor.info/standardization-afnor-spec-ai-frugal
https://telechargement.afnor.info/standardization-afnor-spec-ai-frugal
https://www.climatechange.ai/related-orgs
https://www.climatechange.ai/related-orgs
https://huggingface.co/spaces/AIEnergyScore/Leaderboard 
https://www.sashaluccioni.com/about/
https://www.sashaluccioni.com/about/
https://www.sustainableaicoalition.org/iea-observatory-on-energy-and-ai/
https://infos.ademe.fr/magazine-janvier-2025/numerique-quel-impact-environnemental-en-2022/
https://infos.ademe.fr/magazine-janvier-2025/numerique-quel-impact-environnemental-en-2022/
https://www.comparia.beta.gouv.fr/
https://ref-ia.isit-europe.org/?famille=INTERFACE_UTILISATEUR&reco=FRT-1&lang=FR
https://www.afnor.org/en/news/referential-for-measuring-and-reducing-environmental-impact-of-ia/
https://www.afnor.org/en/news/referential-for-measuring-and-reducing-environmental-impact-of-ia/
https://greentechinnovation.fr/frugal-ai/
https://greentechinnovation.fr/frugal-ai/


14040.2006 “Environmental management - Life cycle assess-
ment — Principles and framework” and the ITU-T L.1410
“Methodology for environmental life cycle assessments of in-
formation and communication technology goods, networks
and services”.

However, approaches need to be harmonized to facilitate
transparency and provide a common framework for assessing
artificial intelligence.

• The first challenge is to define the scope of the calcula-
tions to be considered. There seems to be a consensus
among experts on the life-cycle approach (from design
to the end of life of artificial intelligence), but other
movements want to go further (and for good reasons)
by considering the indirect impacts and rebound ef-
fects generated by the products and the services that
integrate AI.

• The second challenge will be to choose the right indica-
tors to measure the environmental impact of artificial
intelligence, to go beyond carbon and take into account
consumption of water, equipment, etc.

Standardization remains a challenge, given the rapid pace
at which AI technology is evolving, and the difficulty of
mitigating the environmental impact of AI or AI systems
involved in the development of technical solutions.

11. TOWARD FRUGAL AI INSPIRED BY
NATURE

It is a striking fact that many of the basic behaviours re-
quiring few efforts to animals are challenging to realize with
current AI. These behaviours have been selected by millions
of years of evolution to ensure animal survival, requiring
them to solve as early as possible the so-called “four Fs”,
namely feeding, fighting, fleeing, and mating. Although
these behaviours may be learned and acquired by animals
during their lifetime, it turns out that many of them are
innate or are learned extremely quickly. This suggests that
these innate mechanisms are wired up in the nervous system.
However, simple calculations show that for animals with a
large brain, DNA is not large enough to store all informa-
tion about the nervous system connectivity [236]. Clearly, a
larger brain allows the creation of new areas that don’t exist
in a smaller brain, which can be recruited for the emergence
of new behaviours or skills.

It seems, however, that for a given common cognitive task,
the larger brains have a great deal of circuit redundancy,
which ensures robustness and probably better discrimina-
tion between signals from sensory sensors. It is this redun-
dancy, rather than the creation of new circuitry, that seems
to be the main factor in the differences between larger and
smaller brains [46]. Insects have much smaller brains than
humans. They, however, often possess a very wide range of
different behaviours, and are capable of complex learning
(decisions, number evaluation, calculations, evaluation of
time intervals time intervals, abstract comprehension, etc.),
all at a very low energy cost [37]. For example, for a fruit
fly (drosophila melanogaster) with an average weight of 1mg,

the total metabolism requires around 0.1mW. In fact, it ap-
pears [46] that many of the cognitive tasks performed by
insects require very few neurons and that brain size is not a
reliable indicator of the diversity of cognitive behaviour. Be-
yond energy and structural aspects, numerous studies show
that the creation of associative memory in insects’ brain is
extremely fast and requires few training, exhibiting a form
of a few-shot learning [181].

The combination low energy cost, circuitry of small size,
and few-shot learning makes the brain of animals, and in
particular of insects, particularly attractive as a source of
inspiration for the design of frugal AI. Inspiration from gen-
eral knowledge about brain structure has already a long his-
tory. Back to the seminal paper of W. S. McCulloch and
W. Pitts in 1943 [154], the first neural networks were di-
rectly inspired by brain organization. Convolutional neural
networks (CNN), now widely used in current AI models,
are also inspired by the structure of the visual cortex of
cats [82]. More recently, inspiration from the visual system
of the dragonfly has been used toward the design of mis-
sile guidance and interception [42; 41]. Cerebellum inspired
spiking neural networks are used in robotics for the con-
trol of articulation of unstable robots [175] or for multitask
models for pattern classification and robotic trajectory pre-
diction [215]. Moth and Drosophila’s olfactory circuits have
been used to design image [65; 197] classification neural net-
works. Leveraging brain capabilities for frugal AI requires,
however, deeper knowledge of its structural organization.

These models are based on the functional connectome, i.e.,
the connections between various regions of the brain. Lever-
aging brain capabilities for frugal AI requires, however more
deeper knowledge on its structural organization given by the
neural connectome, the wiring map at the neuron level. Un-
til recently, connectomes of organisms were only partially
known. The first complete connectomes were only charac-
terized in the last decade for the roundworm Caenorhabditis
elegans (302 neurons, 7000 synapses) initially available in
1989 [233] and revised in 2019 [53], for the tadpole larva
of Ciona intestinalis (177 neurons, 6618 synases) [190] in
2016, for the segmented sea worm Platynereis dumerilii larva
(1500 neurons, 25509 synapses) [213] in 2020, and for the
drosophila larva (3016 neurons, 548000 synapses) [223] in
2023. Finally, in 2024 the full connectome of adult female
Drosophila (139255 neurons, 5 · 107 synapses) has been re-
ported [70]. In addition, several sub-circuits of these con-
nectomes and their biological functions have already been
identified. This is, for instance, the case for the regions as-
sociated with memory [136], its visual [204] and olfactory
[193] systems, or its ellipsoidal body playing the role of a
“compass” [106]. Overall, this detailed knowledge provides
avenues for the design of frugal AI networks.

12. AI EMBEDDED ON DEVICES
This chapter presents basic information about dedicated
hardware used in AI calculations: their types, character-
istics, basic parameters, and usage scenarios.

12.1 Current State of Hardware for Frugal AI
The current state of frugal AI hardware focuses on solu-
tions that combine computing power, cost-effectiveness, and



energy efficiency. Hardware has seen significant advances
driven by the need to democratize AI beyond expensive,
power-hungry systems like NVIDIA’s H100 or Cerebras’ WSE-
2. The rise of edge computing has driven the development
of low-cost neural processing units (NPUs), such as Qual-
comm’s Hexagon NPU in Snapdragon chipsets and AMD’s
Ryzen AI Engine in low-cost laptops, enabling AI model in-
ference directly on the device with ultra-low power consump-
tion. Companies like Google have shrunk the size of their
Edge TPU to make it usable in more affordable devices like
their Pixel phones, while startups like Groq and D-Matrix
are introducing new designs, such as the Tensor Streaming
Processor and in-memory computing chips, that maximize
cost-to-performance ratios. Open-source hardware initia-
tives, like RISC-V-based AI accelerators, are also gaining
traction, offering customizable, low-cost alternatives to pro-
prietary ASIC solutions. Meanwhile, energy-efficient pho-
tonic chips from Lightmatter and neuromorphic processors
like Intel’s Loihi 2, whom remain in early adoption stages,
but promise to further reduce operational costs. Overall,
these developments signal a shift toward frugal AI hard-
ware that balances performance and affordability, making
AI more accessible on many more devices at much lower
cost.

12.2 Dedicated AI Hardware

12.2.1 Overview of dedicated AI hardware
Traditional general-purpose processors (CPUs) are often in-
capable of handling the massive computational loads re-
quired by modern AI applications. This has led to the adap-
tation of already existing or the development of new types
of devices supporting AI tasks, which may be called AI ac-
celerators.

AI accelerators are specialized hardware designed to speed
up the computation processes needed for artificial intelli-
gence (AI) and machine learning (ML) tasks. These de-
vices are optimized to handle the massive parallelism and
high-performance demands of AI workloads, such as train-
ing deep neural networks, running inference tasks, and pro-
cessing large datasets.

Computational models: There are two primary models
for AI computing: cloud-based and edge, each offering dis-
tinct advantages and trade-offs. Understanding these mod-
els is essential in choosing the right solution for specific use
cases, particularly in the context of frugal AI, where effi-
ciency, cost, and performance are crucial.

AI accelerators for cloud computing and edge computing are
often designed with different priorities and use cases in mind,
so they typically look different in terms of form factor, per-
formance characteristics, and power consumption (see Table
4).

Types of AI accelerators: We can distinguish several
types of these devices:

• Graphics Processing Units (GPUs): originally
designed for graphics rendering, GPUs are highly par-
allel processors that are well-suited for deep learning
tasks, particularly for training neural networks.

• Tensor Processing Units (TPUs): developed by
Google, TPUs are application-specific integrated cir-
cuits (ASICs) designed to accelerate tensor processing.
TPUs offer high efficiency and are tailored for work-
loads using Google’s TensorFlow framework.

• Field-Programmable Gate Arrays (FPGAs): FP-
GAs are configurable hardware that can be customized
to optimize specific AI algorithms. They offer flexibil-
ity for fine-tuning20 AI applications but may not reach
the same level of performance as GPUs or TPUs in cer-
tain tasks.

• Application-Specific Integrated Circuits (ASICs):
these are custom-designed chips built specifically for
AI workloads. They provide excellent performance but
are limited to specific tasks.

• Neural Processing Units (NPUs): NPUs are spe-
cialized hardware designed specifically for accelerating
neural network-based algorithms. They are found in
some modern smartphones and embedded systems.

• Language Processing Unit (LPU): LPU is a pro-
prietary and specialized chip developed by the Groq
company. It is designed to handle the unique speed
and memory demands of LLMs – tasks that are se-
quential by nature rather than parallel.

• Digital Signal Processors (DSPs): while not as
specialized as others, DSPs can accelerate certain sig-
nal processing tasks related to AI, such as audio and
image processing, with lower power consumption.

AI accelerators play a critical role in the evolution of AI
technologies, making complex computations more efficient,
faster, and cost-effective, which is essential for the rapid
progress of AI applications across various industries.
The following table compares basic features of different types
of AI accelerators (their architectures).

12.2.2 AI accelerators in embedded systems (for Fru-
gal AI)

This chapter focuses on AI accelerators used in embedded
systems in the context of ”Frugal AI”. We discuss require-
ments imposed on this type of equipment, types of devices,
their characteristics, as well as their advantages, disadvan-
tages, and challenges.
While AI accelerators such as GPUs, TPUs, NPUs, and FP-
GAs have traditionally been used in high-performance data
centers or cloud-based systems, the shift towards edge AI
and frugal AI solutions is reshaping the landscape. Fru-
gal AI refers to the application of AI technologies in envi-
ronments with constraints such as limited power resources,
low-cost hardware, small form factors, and low-latency re-
quirements. This shift demands the use of low-power, cost-
effective, and efficient AI accelerators capable of performing
high-speed computations without compromising energy con-
sumption or operational costs.

AI accelerators can be very useful in the context of Fru-
gal AI, especially in environments with limited computing
power or budget. The concept of Frugal AI often focuses

20See Section 14.2 for a definition of fine-tuning



Feature Cloud computing Edge computing
Form factor and hard-
ware design

- usually high-performance, large-scale devices like
GPUs, TPUs, or ASICs (housed in data centers),
- designed to handle the heavy lifting of AI tasks
such as training deep neural networks or processing
large datasets in real-time across many users.
- can be rack-mounted or part of large-scale server
systems, and are typically more power-hungry, as
they can rely on high power and cooling systems
provided by the data center.

- typically compact, energy-efficient, and designed
for low-power environments. They need to be small
enough to fit in devices like smartphones, IoT de-
vices, drones, autonomous vehicles, and embedded
systems.
- often designed to provide AI capabilities directly
on the device without relying on cloud computing,
enabling real-time processing and low latency in
scenarios like real-time video processing, voice as-
sistants, or autonomous decision-making.

Performance characteris-
tics

- Optimized for maximum computational power,
which is necessary for training large models and
performing complex computations that require ex-
tensive parallel processing.
- Typically handle tasks like large-scale machine
learning training, processing large datasets, and ex-
ecuting high-throughput operations. The perfor-
mance (measured in terms of teraflops, for exam-
ple) is much higher compared to edge accelerators.
- Have virtually no constraints on power or thermal
limits, as they are typically in large data centers
with access to robust cooling systems.

- Optimized for lower power consumption while still
delivering sufficient performance to handle real-
time AI inference tasks. They are designed to run
pre-trained models (inference), rather than train-
ing new models.
- Performance is usually lower compared to cloud
accelerators, but the focus is on balancing speed,
power efficiency, and small size.
- The goal is to perform local processing to re-
duce the need for constant communication with the
cloud, improving latency and privacy.

Power consumption - Generally not constrained by power limitations,
as they reside in data centers with access to ample
power and dedicated cooling solutions. They can
consume a significant amount of energy due to their
high-performance design.

- Power efficiency is a critical factor here. These ac-
celerators are designed to operate on devices with
limited power supply, like smartphones, wearables,
or battery-powered IoT devices. Power consump-
tion must be minimized without sacrificing too
much performance.

Use cases - Training large-scale AI models (e.g., training deep
neural networks for natural language processing,
image recognition, etc.).
- High-volume AI inference for tasks like recom-
mendation systems, fraud detection, and serving
multiple clients with complex models.
- Examples: data centers processing AI for online
services, such as search engines, recommendation
engines, and advanced analytics.

- Real-time inference on localized devices, enabling
low-latency processing without waiting for cloud
communication.
- Common edge computing tasks include au-
tonomous vehicles, smart cameras, IoT sensors,
voice assistants, and smartphones.
- Examples: on-device image recognition for
surveillance cameras, facial recognition on smart-
phones, voice-to-text on smart speakers, and real-
time decision-making in drones or robots.

Connectivity and latency - Rely on high-speed internet and cloud infrastruc-
ture for communication. This introduces latency
due to the need for data transfer between the edge
device and the cloud, especially in remote or poorly
connected areas.

- Aim to minimize or eliminate latency by process-
ing data directly on the device, which can be crucial
for time-sensitive tasks (e.g., autonomous driving,
real-time medical diagnostics).
- Data is processed locally without the need for an
internet connection, ensuring that decisions can be
made instantaneously.

Cost - The cost of using cloud-based AI accelerators is
typically usage-based and can be expensive for ex-
tensive tasks like model training or large-scale data
processing, though it offers scalability and flexibil-
ity.
- Costs can include cloud service subscriptions,
data transfer, and storage fees.

- Typically more affordable in terms of upfront
costs, as they are embedded in consumer devices
or dedicated hardware for specific applications.
- While the initial cost may be lower, managing a
large-scale network of edge devices could still in-
volve infrastructure management and maintenance
costs.

Table 4: Computational models

on building AI models and solutions that achieve significant
results with minimal resources, which is especially impor-
tant in settings like emerging markets, low-cost devices, or
resource-constrained environments.

Table 5 describes how AI accelerators align with and en-
hance Frugal AI.

12.2.3 Types of AI accelerators in/for embedded sys-
tems

AI accelerators for embedded systems come in various forms,
including low-power GPUs, NPUs, FPGAs, and ASICs, each
offering unique advantages depending on the specific appli-
cation requirements. What sets these accelerators apart
is their ability to deliver high compute performance while
maintaining low power consumption and occupying minimal
space: two critical factors in embedded applications.
Low-power GPUs: Low-power GPUs are designed specif-

ically for embedded systems, mobile and IoT devices, smart
cameras, drones and edge computing where energy efficiency
is crucial. They deliver a balance between performance and
power efficiency, making them suitable for battery-operated
devices and energy-constrained applications.
Examples of this type of device are:

• NVIDIA Jetson Series (Jetson Nano, Jetson Xavier
NX) [165]

• ARM Mail GPUs (Mali-G52, Mali-G76, Mali-G57) [15]

• Qualcomm Adreno GPUs (Adreno 620, Adreno 660)
[179]

• Intel Integrated Graphics (Iris Plus, UHD Graphics)

• AMD Radeon RX 500 Series (low-power models)

• Imagination Technologies PowerVR Series (GM9446,
Series8XE) [56]



Figure 8: AI Accelerators feature comparison

• VPU (Vision Processing Unit) by Intel Movidius. [110]

These low-power GPUs are suitable for applications in Fru-
gal AI, as they make AI more accessible by reducing the cost
and energy consumption needed to run AI models, especially
in environments with limited resources.
Coral Edge TPU: Google Edge TPU is a specialized low-
power AI accelerator designed for edge computing. It pro-
vides fast, efficient machine learning inference while consum-
ing minimal power, making it ideal for IoT, embedded AI,
and smart devices. Its key features are:

• ultra-low power consumption: ideal for battery-
powered AI devices,

• optimized for TensorFlow Lite: fast and efficient
inference for pre-trained models,

• cost effectiveness: a relatively low-cost solution for
running AI models on edge devices,

• affordable and scalable: integrated into Coral Dev
Boards, USB accelerators, and M.2 modules,

• real-time AI at the edge: no need for cloud pro-
cessing, reducing latency and data transfer costs,

• user-friendly: easy to integrate with popular Rasp-
berry Pi boards and other small devices.

Field-Programmable Gate Array (FPGA) AI accel-
erators: FPGAs are hardware devices that consist of an
array of programmable logic blocks, which can be config-
ured to execute custom operations. These devices are highly
flexible and can be adapted to meet specific computational
needs. The advantages of using FPGAs for AI acceleration
are:

• customizable processing pipelines: they can be
programmed to implement custom hardware accelera-
tors for specific parts of an AI model,

• energy efficiency: they offer lower power consump-
tion compared to GPUs and CPUs for specific work-
loads, i.e., a well-optimized FPGA can provide per-
formance similar to GPUs but with much less power
usage,

• high throughput and parallelism: the ability to
perform multiple operations in parallel allows FPGAs
to provide high throughput for AI workloads,

• low latency: they have a unique advantage when it
comes to low-latency AI inference,

• reconfigurability: unlike specialized AI hardware ac-
celerators like ASICs, FPGAs can be reconfigured to
support new algorithms or updated models.



Features Description of AI acceleratiors
Improved Effi-
ciency with Lim-
ited Resources

They can perform AI tasks much faster
than general-purpose CPUs, helping
achieve better performance without need-
ing large-scale, expensive infrastructure.

Cost-Effective AI
Solutions

Allow for cost-effective solutions by pro-
viding specialized hardware that delivers
high performance without requiring a sig-
nificant investment.
Becoming more common, enabling the de-
ployment of AI in resource-constrained
environments while keeping costs low.

Energy Efficiency
for Sustainable AI

Designed to be more energy-efficient than
general-purpose processors, which is crit-
ical when deploying on battery-operated
devices or in areas with limited power re-
sources.
Remain sustainable and can be deployed
at scale, even in environments where elec-
tricity costs are high or where access to
power is limited (e.g., rural areas, devel-
oping countries).

Enabling Lo-
calized AI for
Accessibility

Frugal AI often focuses on local process-
ing (i.e., on-device AI), which ensures
that AI applications are available even in
remote areas with limited connectivity.

Scalability with
Low-Cost AI
Infrastructure

In many parts of the world, AI applica-
tions need to be deployed on a large scale
but with limited resources. AI accelera-
tors in smartphones, IoT devices, or em-
bedded systems offer a way to scale AI
solutions across many devices with mini-
mal cost.

Table 5: AI accelerator features that boost Frugal AI.

There are also some challenges while using FPGAs for AI:

• programming complexity: one of the biggest chal-
lenges of using FPGAs is the programming complexity,
because it requires knowledge of hardware description
languages (HDL),

• performance variability: the performance depends
heavily on a configuration of a particular task. Poor
optimization can lead to suboptimal performance. As
a result, performance tuning is essential, which can be
time-consuming,

• cost and availability: they can be more expensive
than GPUs for some use cases, particularly for mass
deployment in cloud-based or consumer devices.

Here are several examples of FPGA AI accelerators: Xilinx
Versal AI Core [9], Xilinx Vitis AI [10], Intel Altera [109],
Achronix [54], AWS EC2 F1 instances [72].
ASICs for AI acceleration: ASICs are custom-designed
hardware solutions optimized to perform specific tasks much
faster and more efficiently than general-purpose processors
(CPUs and GPUs). The key points of ASICs as AI acceler-
ators are:

• specialization: ASICs are built for one particular
job. By tailoring the hardware to a specific AI model
or operation, ASICs are highly efficient at executing
those tasks,

• high performance: they can achieve unmatched,
processing many operations in parallel with minimal
overhead,

• low power consumption: can be extremely power-
efficient because the hardware is tailored to the task
at hand,

• fixed functionality: that means they are incredibly
efficient at doing what they are designed to do,

• cost-effectiveness at scale: while ASICs can be ex-
pensive to develop initially, they become extremely
cost-effective at scale,

• compact form factor: ASICs can be designed to
have a very small form factor, which allows them to
be integrated into compact devices.

Despite these advantages, ASICs also meet some challenges:

• lack of flexibility: ASICs are fixed-function devices,
meaning that once designed, they cannot be repro-
grammed or repurposed for other tasks,

• high development cost: designing and manufac-
turing an ASIC is a costly and time-consuming pro-
cess, typically requiring millions of dollars in research
and development, especially for custom-designed hard-
ware,

• initial investment: the upfront cost to develop and
produce an ASIC is significant,

• limited customization after production: once an
ASIC is produced, any changes to the hardware require
the creation of a new version.

Examples of ASIC AI accelerators are: Google TPU [50],
Apple’s Neural Engine (ANE), Huawei Ascend [55], Intel
Nervana NNP (discontinued in favor of development of Ha-
bana Labs’ chips) [111].
Neural Processing Unit(s): Neural processing units (NPUs)
are specialized computer microprocessors designed to mimic
the processing function of the human brain. They are typ-
ically used within heterogeneous computing architectures
that combine multiple processors, e.g., CPUs and GPUs on
a single semiconductor microchip known as a system-on-chip
(SoC).
By integrating a dedicated NPU, manufacturers are able to
offer on-device generative AI apps capable of processing AI
applications, AI workloads, and machine learning algorithms
in real-time with relatively low power consumption and high
throughput.
The following list presents NPUs’ key features:

• parallel processing: NPUs can break down larger
problems into components for multitasking problem
solving,

• low precision arithmetic: NPUs often support 8-bit
(or lower) operations to reduce computational com-
plexity and increase energy efficiency,

• high-bandwidth memory: high-bandwidth mem-
ory on-chip feature to efficiently perform AI processing
tasks requiring large datasets,

• hardware acceleration: incorporation of hardware
acceleration techniques such as systolic array architec-
tures or improved tensor processing.



Examples of NPU AI accelerators are: Rockchip RK3399Pro
[186], MediaTek Dimensity NPU [156], Khadas Vim3 [121],
Huawei Ascend CPUs [55], Arm Cortex-M55 [14], Arm Ethos-
N78 [13].

12.3 Future Trends in Hardware for Frugal
AI

Next-Generation Chips:

• Predictions on how processors will evolve to better
support AI tasks with minimal resources.

• Focus on energy efficiency, speed, and computational
power.

Emerging Technologies: Emerging technologies can help
stem the growing resource needs of today’s AIs by bringing
new ways of thinking about and implementing computing
algorithms. Among these emerging technologies, quantum
and neuromorphic computing offer a seemingly more sus-
tainable alternative to “classical” deep learning.

• Quantum computing: leveraging quantum superposi-
tion and entanglement phenomena offers an approach
to computing where all possible results of a given cal-
culation can be done in a single step, whereas they
should be treated sequentially with classical comput-
ers. This should allow tremendous speed-up of com-
putation, allowing to tackle problems that are practi-
cally impossible to address by using classical comput-
ing. Numerous research works aim at rethinking ma-
chine learning in the light of quantum computing [237].
Another appealing property of quantum computing is
related to the fact that quantum computing systems
use energy in a very different way than classical com-
puters. Quantum computing is very low in terms of en-
ergy consumption. The main energy cost in quantum
computer systems is due the cryogenic cooling [216],
since it must operate at low temperature (close to the
near absolute zero). If for classical computers, the en-
ergy cost scales roughly linearly with computational
power, increasing the number of qubits by several or-
ders does not necessarily require increasing the cooling
energy. As a consequence, the energy cost of a quan-
tum system scales much more slowly with respect to
computation capabilities than classical systems.

• Neuromorphic computing can be seen as the associa-
tion of spiking neural networks (SNN) [164; 130] and
efficient devices like memristors [226], both drawing
inspiration from brains. In contrast to ”classical” neu-
ral networks (DNN - Deep Neural Networks), SNNs
are event-driven neurons, emitting a spike (an impul-
sion) when their internal potential, driven by incoming
spikes, reaches a certain value. A spiking neuron needs
energy only during a spike emission. Altogether, a
spiking neuron constitutes both a memory and a com-
putation unit. This allows breaking the Von Neumann
bottleneck by drastically reducing the energy required
to transfer data and speeding up data processing. At
a low level, memristors are used to implement spiking
neurons in an extremely energy-efficient way. Due to
their dynamical behaviour, SNNs are also particularly
adapted to real-time analysis (e.g., [214]). Methods

allowing transformations from DNN to SNN are avail-
able in [36] and its references. Many architectures in-
spired by the DNN have been designed using SNN-like
convolutional layers [228] or even attention layers and
transformers [138].

However, the recent progress in neurology and in the iden-
tification of neural circuits in brains (see Section 11) may
open many new opportunities to draw inspiration from the
small and efficient substructures found in real neural sys-
tems.

Custom AI Chips:

• Trend towards ASICs designed specifically for AI in
embedded systems.

• Companies like Tenstorrent, Mythic, and Hailo with
their unique offerings.

13. AI OPTIMIZATIONS
The great success of Deep Learning methods [131] in numer-
ous domains comes with the two major drawbacks: availabil-
ity of computing power and of the vast quantity of training
data. Frugal approaches are diametrically opposed to Deep
Learning methods. In this section, we review some optimiza-
tion approaches that have been proposed in the literature
to enforce frugality in Deep Learning. Model compression
techniques (see 13.1) are used to decrease the memory foot-
print and computational complexity of deep learning mod-
els. Hardware optimization techniques (see 13.2) aim at
defining dedicated hardware solutions in order to enhance
computational efficiency, reduce latency, and minimize en-
ergy consumption, whereas deployment techniques (see 13.4)
address the optimization of resource deployment. Algorith-
mic optimization techniques (see 13.3) tackle the learning
process and are used when training and inference tasks have
limited compute resources. Finally, data-efficiency methods
(see 13.5) are crucial, especially if datasets are non-accessible
(rare, expensive, or private).

13.1 Model Compression Techniques
Considering the cost of AI systems (see section 7) with deep
neural-based models, optimizing the model itself may help
decrease the infrastructure cost, the training or retraining
and inference costs, or even the deployment cost. Model
compression techniques are an umbrella under which several
different approaches are undertaken in order to reduce these
costs. These techniques aim at decreasing one or several
of the technical metrics given in Figure 9 while simultane-
ously maintaining the model performances (accuracy, pre-
cision, etc). These metrics are, however, not independent.
For instance, decreasing the FLOPS (floating point opera-
tions, roughly the number of additions and multiplications),
evaluating the computational complexity of the model may
increase the number of costly memory accesses, increasing
the backward and forward latency.

Over the last decades, many model compression strategies
have been proposed in the literature and good general sur-
veys are available like for instance [230; 158; 150] or [157].
Surveys are also available dedicated compression methods



Figure 9: Main model metrics addressed by model optimiza-
tion techniques for deep neural models.

applied to AI models with specific structures like Convo-
lutional Neural Networks [133], Transformers [206] or with
specific tasks like image classification [188] or large language
machine [229; 244]. The main available strategies can be
categorized as:

• Quantization: In a typical deep neural network model,
weights, gradients, and activations are typically repre-
sented as 32-bit floating point numbers, a precision
level resulting in high power consumption and high
memory resource requirement. Quantization meth-
ods aim at replacing these high-precision values by
more compact ones (16-bits, 8-bits, ternary or binary),
reducing memory footprint and/or by more efficient
ones, e.g. logarithmic quantization allowing replac-
ing costly multiplications by bitshift operations [143].
Surveys of these techniques can be found in [58; 85] or
[230].

• Pruning: Removing unimportant neurons and con-
nections (unstructured pruning) or even full substruc-
tures (e.f. channels or filters in CNN, attention heads
in transformers) or layers (structured pruning) in or-
der to decrease the memory footprint and the compu-
tational complexity of a model. Accounts on pruning
methods can be found in [45; 210] or [97] for CNN-
based models.

• Low-Rank Approximation: Approximating high-
rank matrices with low-rank counterparts to reduce
memory footprint and/or computational complexity.
These methods typically leverage singular value de-
composition, matrix factorization, or tensor decompo-
sition. Surveys of these approaches can be found in
[230; 171] or [172].

• Knowledge Distillation: Using a large and com-
plex model (the teacher) to train a smaller and sim-
pler one (the student). The distillation process can be
performed during the training of the teacher (online
distillation) or using the pre-trained teacher (offline
distillation). Good accounts of this type of method
can be found in [162] or [230].

• Neural Architecture Search (NAS): For a given
task and a given dataset, use an algorithm to auto-
mate the search of optimally compact and efficient ar-
tificial neural networks performing as well or even out-

performing hand-crafted neural network architectures.
Recent surveys can be found in [47; 74; 220].

Although these methods are the most commonly used, other
approaches are also proposed. For instance, in order to min-
imize the memory footprint of large weight matrices, sparse
representation like weight sharing aims at transforming
many similar parameters with a single connection into a
single weight with multiple connections [161]. Other ap-
proaches referred to as lightweight design propose to re-
place standard structures with simpler and more efficient
ones. For instance, dilated convolution [235]. Furthermore,
all these previous methods can be used alone, in combina-
tions, or associated with other ones. For instance, regular-
ization techniques [205] can be used to enforce sparsity in
model parameters in combination with pruning.

13.2 Hardware Optimization Techniques
Hardware optimization techniques in artificial intelligence
(AI) are pivotal in enhancing computational efficiency, re-
ducing latency, and minimizing energy consumption. These
techniques encompass various strategies, each contributing
uniquely to the performance of AI systems.

13.2.1 Specialized Hardware Accelerators:
The development of hardware accelerators, such as Graph-
ics Processing Units (GPUs), Tensor Processing U-
nits (TPUs), and Field-Programmable Gate Arrays
(FPGAs), has been instrumental in optimizing AI work-
loads. These accelerators are designed to handle the paral-
lel processing demands of AI algorithms, thereby improving
throughput and energy efficiency. For instance, FPGAs of-
fer customizable hardware solutions that can be tailored for
specific AI applications, providing a balance between per-
formance and flexibility. [196], [26]

In certain high-performance or high-efficiency use cases, the
co-design of hardware and software can encompass the cre-
ation of dedicated hardware accelerators (Application Spe-
cific Integrated Circuits – ASICs) for the particular AI model.
By tailoring software algorithms to leverage specific hard-
ware features, and vice versa, this technique achieves effi-
cient execution of AI tasks. For example, optimizing models
for specific hardware platforms, such as Intel Xeon proces-
sors, can lead to significant performance gains [17]. This
approach is the most efficient but entails a high degree of
investment and technical knowledge.

13.2.1.1 Application-Specific Integrated Circuits (A-
SICs).
[141] are custom-designed integrated circuits tailored for
specific applications, offering optimized performance, reduced
power consumption, and enhanced efficiency compared to
general-purpose hardware. They are usually created from
the ground up, based on the specific needs of the application
they are intended for. On 10, existing types of ASICs [38]
are illustrated. Examples of ASICs span various domains,
including:

• Telecommunications: ASICs are employed in net-
work routers and switches to handle specific protocols



and data processing tasks, enabling high-speed data
transmission and efficient network traffic management.

• Consumer Electronics: Devices such as smartphones,
digital cameras, and gaming consoles utilize ASICs to
manage specific functions like signal processing, power
management, and audio encoding/decoding, contribut-
ing to enhanced performance and reduced power con-
sumption.

• Automotive Industry: Modern vehicles incorporate
ASICs for various applications, including engine con-
trol units, airbag deployment systems, and advanced
driver-assistance systems (ADAS), ensuring real-time
processing and increased reliability

Figure 10: Types of ASICs (figure from [38])

13.2.2 Advanced Matrix Extensions (AMX):
Introduced by Intel, AMX is an extension to the x86 in-
struction set architecture designed to accelerate matrix op-
erations, which are fundamental in AI and machine learn-
ing workloads. AMX enhances computational efficiency by
introducing two-dimensional registers and specialized accel-
erators for matrix multiplication, thereby improving perfor-
mance in AI applications. [1]

13.2.3 Hardware-Based Memory Optimization Tech-
niques:

• High-Bandwidth Memory (HBM): Specialized me-
mory like HBM2 and HBM3 (used in NVIDIA A100,
AMD MI300) integrates memory closely with process-
ing units, providing increased bandwidth and reduces
memory bottlenecks. This proximity allows for faster
data transfer rates, essential for AI tasks that require
rapid access to large datasets. Implementations of
HBM in AI accelerators have demonstrated significant
performance improvements in deep learning applica-
tions. [123]

• On-Chip Memory Optimization: AI accelerators
like TPUs, FPGAs, and ASICs reduce reliance on ex-
ternal memory by using on-chip SRAM or eDRAM,
decreasing memory access latency. [22]

• Memory Hierarchy Optimization: Advanced ca-
ching mechanisms and memory prefetching techniques
(e.g., L1/L2 cache optimizations in AI chips) improve
data access speeds. [211]

• Specialized Memory Architectures: Custom mem-
ory designs, such as those utilizing metal-oxide combi-
nations in RRAM, offer non-volatile storage solutions
with high endurance and speed. These characteristics
are beneficial for AI applications requiring persistent
storage and rapid data retrieval. Research into metal-
oxide RRAM has highlighted its potential in neuro-
morphic computing and AI hardware acceleration.[95]

• Processing-in-Memory (PIM): Emerging PIM ar-
chitectures integrate processing units directly within
memory modules, minimizing data movement over-
head. Recent advances in PIM have shown promise
in optimizing analogue AI computations, particularly
through the use of resistive random-access memory
(RRAM) technologies. [139]

• Hardware-Assisted Mixed Precision Support:
Modern GPUs (e.g., NVIDIA Tensor Cores) and AI
ASICs (e.g., Google’s TPUs) provide native support
for lower-precision computations (FP16, INT8) to op-
timize memory usage. [184]

• Accelerator-Driven Data Arrangement: Optimiz-
ing data placement and access patterns in memory can
significantly reduce runtime for AI models. Techniques
that align data organization with the architecture of
hardware accelerators have been shown to minimize
off-chip data access, thereby enhancing performance
in transformer-based models. [11]

For a comprehensive understanding of these hardware opti-
mization techniques and their applications, several literature
reviews provide in-depth analyses. [5], [142] , [137]. These
resources collectively elucidate the critical role of hardware
optimization in advancing AI capabilities, particularly in en-
vironments with stringent resource constraints.

13.3 Algorithmic Optimization Techniques
There are two main algorithm optimization approaches: in-
creasing the efficiency of training or inference. The major
training optimization methods are:

• Distributed Learning over decentralized hardware
has become an important challenge with the emer-
gence of powerful personalized equipment, capable to
train and/or execute various applications on-the-chip
(Internet-of-Things or smartphone devices). We dis-
tinguish two major approaches: Federated and Split
Learning. Federated Learning [128], [127], [34] has
emerged as a key solution to reduce the need for cen-
tralized data gathering and training. This collabora-
tive and iterative approach builds a common global
model. The model benefits from local knowledge lear-
ned on private data, without sharing data with third
parties. Split learning methods [92] are deployed when
data labels are delocalized from data gathering equip-
ment, or if the capacity of the training device is not suf-
ficient to execute a single iteration. Recently, the hy-
brid methods [140] have emerged. They benefit jointly
from the advantages of split and federated learning.

• Meta-learning methods [208], [102] belong to the
class of learning algorithms whose performance increa-
ses not only with the number of training samples, but



also with the number of (potentially related) learning
tasks. This concept (learning to learn) is similar to the
animal learning process (learning biases and general-
izations, given a few examples), which improves the
data and computation efficiency.

• Reinforcement Learning (LR) [201], [117] maxi-
mizes the total reward of the agent over interactions
with uncertain and complex environment. The two
threads represent the trial-and-error learning system
and optimal control. In certain cases, it is possible
to simplify the calculus load or minimize the latency
or energy consumption by splitting a single agent into
multiple agents [145], or by their spatial distribution.
The very recent developments in GenAI in combina-
tion with the emergence of Agentic AI [71] lean on the
RL approaches to minimize the overall calculus energy.
The open question remains if the former two methods
cost less than simpler but equivalent Machine Learning
approaches that can not generalize to multiple tasks.

• Self-supervised learning (SSL) grasps the depen-
dencies between its inputs from a large volume of un-
labelled instances. This is one of the human-level intel-
ligence factors, and its principles are used to train early
NN networks [23], [100]. SSL learns discriminative fea-
tures by automatically generating pseudo-labels. One
way to create these labels is by data-augmentation:
building the transformations of a single sample (so-
called dictionary) and aligning it to similar or dissim-
ilar samples.

There are four classes of the SSL [20]: Deep Metric
Learning (DML), Self-Distillation, Canonical Corre-
lation Analysis (CCA) and Masked Image Modeling
(MIM). The DML methods train networks to distin-
guish sample pairs that are alike in the embedding, and
some also perform mining of the similar pairs present
in the original dataset. The class of Self-Distillation
algorithms learns the predictor to correctly map the
outputs of the two encoders, which were fed by the
two similar (transformations of the single input) or
dissimilar samples. One way to prevent the predic-
tor collapse (prediction of the constant) is to use two
predictor networks, student and teacher. They are up-
dated throughout the training by using gradient de-
scent (student) and moving average-based weight up-
dates of the student network (teacher). The CCA is a
family of methods that analyses the cross-covariance
matrix of variables to infer their relations. For mul-
tivariate and nonlinear CCA, one popular way to do
this is to jointly learn parameters of the two networks
with maximally correlated outputs.

• Transfer Learning (TR) [173] promotes the lifelong
machine learning knowledge re-usage to minimize the
latency and energy used for training. In general, the
transfer of knowledge towards the current task consid-
ers already gathered datasets or models trained prior
to the current task. Data-based approaches are fo-
cusing on transformations between datasets (feature-
relations, distributions, etc.). Model-based TR initiali-
zes the training model with the existing one (or its
adapted version), which is often trained in domains,
tasks, and distributions that are different from the

current task. Based on the similarity of the feature
space [219], TR can be split into homogeneous (domain
differences are modelled by bias or conditional distri-
bution corrections) and heterogeneous TR. There are
globally four TR [173]: instance- (heuristic or hypothe-
sis based instance-weighting methods), feature- (trans-
formation of the original feature set towards symmet-
ric or asymmetric feature representations: augmen-
tation, reduction or alignment of distribution differ-
ences), parameter- (model and/or parameter transfer
of knowledge) or relational-based methods (transfer of
the source-target relationship rules: spatial or geomet-
ric structure, statistics, etc.).

• Multi-task [40] is an inductive transfer learning ap-
proach that trains a common model over different tasks.
The intuition behind this is that the generalization of
the model improves even if training tasks are not re-
lated. Its training cost is smaller than that of a cu-
mulated sum of per-task training. The learning com-
plexity of multi-task algorithms varies, ranging from
k-nearest neighbours (sharing the clustering structure
[114]), decision trees [108] (feature subset share), to-
wards backpropagation neural networks (multiple out-
puts that share one fully connected hidden layer, for
example). Today, distributed and asynchronous vari-
ants of multi-task learning boost its usage. Moreover,
trained models deployable to continual or active learn-
ing may outperform approaches that do not use trans-
fer learning [183].

• Instance-based methods [2] do not train any model,
but rather use the available dataset for prediction on
new data. It is efficient, but in general less accurate
compared to algorithms based on model training. It is
used in cases It is often used in pattern recognition or
anomaly detection fields.

The above list of training techniques that may improve ef-
ficiency is not exhaustive. The final choice of the algorithm
depends on a set of specific parameters of a use case (en-
ergy consumption, hardware, topology, etc.). Other efficient
techniques exist, such as weakly-supervised or incremental
learning.
The outcome of the training is a model that is further de-
ployed on one or more types of equipment for inference (i.e.,
detection, classification, prediction, etc.). The major infer-
ence optimization methods are:

• Distributed inference allows for deployment of the
trained models on edge-like equipment to achieve qui-
cker response times, reduced bandwidth costs, and en-
hanced data privacy.

• Model compression and approximation: it is pos-
sible to use approximate solutions (i.e., quantized, pru-
ned models) to reduce the overall computational com-
plexity.

• Other classes of inference accelerations: early
exit of inference, inference cache, or model-specific in-
ference accelerations (CNN, RNN, Transformer) [7].



13.4 Deployment Optimization Techniques

13.4.1 Efficient serving strategies

• Serverless Computing: Serverless architectures en-
able dynamic resource allocation, allowing AI models
to scale efficiently based on demand. This approach
reduces operational costs and simplifies deployment,
particularly in high-volume applications. [96]

• Cloud-Based Deployment: Utilizing cloud platforms
for AI deployment offers scalability, flexibility, and ac-
cess to powerful tools and infrastructure, which are
built to be energy efficient. Best practices include
selecting the appropriate cloud platform, optimizing
data storage and management, implementing robust
security measures, and monitoring performance to en-
sure cost-effectiveness and efficiency [174]

• Multi-tier serving: Deploying lightweight models on
edge devices for rapid responses, while utilizing more
comprehensive models on the cloud for high precision
when necessary, is suitable for applications that bal-
ance speed and accuracy, such as speech assistants and
mobile AI. [3]

13.4.2 Parallelization, Distributed Training & Infer-
ence

• Model Parallelism: Dividing a model across multi-
ple GPUs or TPUs is beneficial for very large models.
[242]

• Data Parallelism: Distributing input data across
multiple processing units facilitates faster inference.
[195]

• Edge-Cloud Hybrid Inference (similar to Multi-
tier serving & Load Balancing Across Distributed Sys-
tems): Offloading intensive computations to the cloud
while maintaining lightweight operations at the edge
optimizes performance and resource utilization. [240]

13.4.3 Scaling strategies

• Adaptive Computation Scheduling: Dynamically
allocating computational resources based on runtime
conditions, such as prioritizing critical tasks or ad-
justing inference frequency, thereby optimizing latency
and energy use. [28]

• Load Balancing Across Distributed Systems (sim-
ilar to Multi-tier serving & Edge-Cloud Hybrid Infer-
ence): Ensuring efficient resource utilization in multi-
device or cloud-edge deployments by distributing infe-
rence tasks according to device capacity and network
conditions. [118]

• Context-Aware Inference: Leveraging environmen-
tal or user-specific cues to selectively activate model
components, reducing unnecessary computation. [207]

13.4.4 Graph substitutions
Each substitution replaces a sub-graph matching a specific
pattern with a new sub-graph that computes the same re-
sult. What is worth emphasizing is that the architecture of
the model does not change as a result of these operations.
For example, operator fusion combines multiple operators
(e.g., BatchNorm, ReLU, and Conv) into a single kernel, re-
ducing memory access overhead and enhancing performance
during inference. [199]. [76], [116]

13.4.5 Examples of deployment optimization tools and
frameworks

They usually mix different techniques, described in the sub-
sections above. These are, for example:

• TVM (Apache TVM): An end-to-end deep learning
compiler that optimizes model execution for different
hardware targets (CPU, GPU, FPGA, and microcon-
trollers). [12]

• XLA (Accelerated Linear Algebra): A domain-
specific compiler for optimizing TensorFlow and JAX
models. [169]

• OpenVINO: provides graph optimizations, operator
fusion, and low-level execution improvements similar
to other compiler-based tools. It targets specific Intel
accelerators (e.g., CPUs, GPUs, FPGAs, VPUs). [168]

• TensorRT (Nvidia): Converts and optimizes deep
learning models for high-performance inference on NVidia
GPUs. [166]

• ONNX Runtime: is a cross-platform machine-learning
model accelerator [167]

13.5 Data efficiency methods
The choice of the frugal algorithm should take into account
the specificities of input data (i.e., availability of labels for
learning, volumes: large/rare dataset, structure, etc.), its
properties (modality, correlations, etc.) and the final usage
(single, multi-task, future transfer learning, etc.).

• Online Learning: This class of algorithms [101] learns
incrementally from new data. This allows adaptations
in evolving environments without revisiting past data
(for example, change of data distributions).

• Data augmentation: Data storage capacity is some-
times poor. Data augmentation methods increase the
number of samples used in training, given a modest
dataset size. Particular methods range from genera-
tive augmentation, feature-space augmentation, unsu-
pervised augmentation, or basic transformation func-
tions, see [217] and references within. Several catego-
rizations are possible, for example, based on the num-
ber of samples used for a new sample generation (in-
dividual, multiple, or population data augmentation)
or based on data-modality (value-, structure- or value-
structure data augmentation).

• Knowledge sharing (i.e., meta learning [103], life-
long learning [189], multi-task learning)



• Non-supervised paradigms (i.e., semi-supervised,
unsupervised representation, reinforcement learning)
A major challenge of machine learning at scale is ob-
taining the pre-processed, labelled and large dataset
[163]. To overcome this problem, algorithms such as
semi-supervised and transfer learning are used. The
former class of approaches increases the accuracy of
the solution with less labelled data, and the latter by
transferring the knowledge from the use-cases relevant
to the current one.

• Feature Engineering: Selecting or engineering fea-
tures that capture relevant information efficiently.

• Dimensionality reduction: Reducing data from a
high-dimensional space to a lower-dimensional space
to reduce computational complexity while retaining
the (most) meaningful features. There exist diverse
approaches, early ones like principal component anal-
ysis (PCA) or linear discriminant analysis (LDA) but
also nonlinear and multi-dimensional ones [200].

14. OPEN QUESTIONS
In this last section, we present open questions and topics
that were not covered in the initial version of this document.
These sections may be included in subsequent versions of the
document or remain as open questions. Obviously, this list
is not exhaustive and is intended to encourage the submis-
sion of questions to the research departments of relevant
universities or companies.

14.1 Does reusability make AI frugal?
Definition: In order to facilitate the widespread adoption
of AI, it is imperative to explore approaches that can be
readily implemented. A potential solution lies in the pre-
training of AI models that can be either directly reused or
rapidly customized to suit a variety of applications. Rather
than developing a model from scratch, it would be more
efficient and “expeditious” to assemble it from pre-existing
components, analogous to the way in which we construct
vehicles (cars, planes, etc.) by incorporating various parts.

Reusability21 can improve the frugality of AI in several ways.
Firstly, it promotes cost efficiency by reducing the need for
extensive resources when training new models from scratch.
In addition, it offers time savings by allowing developers to
leverage existing solutions, which accelerates deployment.
Furthermore, reusability helps optimize resources, minimiz-
ing both computational power and energy consumption. It
also facilitates knowledge transfer, as reusable models can
incorporate previously learned knowledge, improving perfor-
mance without incurring additional training costs.

However, reusability may not always lead to frugality in AI.
One concern is overfitting, where a model trained on a spe-
cific dataset may not generalize well to new data, potentially
necessitating retraining. There are also maintenance costs
associated with outdated or poorly designed reusable com-
ponents, which can accumulate over time. Integration chal-
lenges may arise when reusing components from different

21Maybe reusability is not limited to fine-tuning. In this case,
a greater distinction would have to be made; a point we have
not addressed in Sections 14.1 and 14.2.

projects, leading to compatibility issues that require addi-
tional resources to address. Moreover, the quality variability
of reusable models can result in inefficiencies; not all models
are of high quality, and using subpar options can increase
long-term costs. Lastly, some applications might require sig-
nificant customization of reused models, negating the initial
cost savings.

Training reusable models is related to the challenge of cre-
ating models with strong generalization capabilities. A re-
cent trend to enhance the generalizability of models, such
as Large Language Models (LLMs), involves increasing the
training compute and the size of the training dataset [35].
Although these approaches may seem fundamentally con-
trary to frugal principles, the upfront training cost can be
amortized over multiple uses if these models are reused.
Therefore, the trade-off between reusability and frugality
should be considered when training such generalized models.
Smaller but reusable pre-trained models, such as word2vec
[160], should be encouraged.

This illustrates that while reusability has benefits, it can
also lead to inefficiencies in certain contexts, opening up
interesting research questions.

14.2 Does fine-tuning make AI frugal ?
Definition: “Fine-tuning” in AI refers to the process of tak-
ing a model pre-trained on a large dataset and making small
adjustments to its parameters to adapt it to a specific, pre-
sumably smaller dataset [241; 227; 49]. The rationale is that
the model benefits from the knowledge acquired during pre-
training instead of starting from scratch, while still being
tailored to the task of the smaller dataset.

Fine-tuning can contribute to making AI models more fru-
gal in several ways: (i) reduced Training Time (fine-tuning
a pre-trained model typically requires less time and com-
putational resources compared to training a model from
scratch); (ii) lower Data Requirements (fine-tuning often
requires less data, as the model has already learned gen-
eral features from the pre-training phase); (iii) efficiency in
Resource Use (by leveraging existing knowledge, fine-tuned
models can achieve good performance with fewer parame-
ters, leading to lower memory and energy consumption).

Especially in terms of computational efficiency, several ques-
tions arise: (i) How does the training time for fine-tuning
compare to training from scratch across various model archi-
tectures? What factors influence the efficiency of fine-tuning
in terms of convergence speed and resource allocation? (ii)
What strategies can be employed to further reduce data re-
quirements during the fine-tuning process without sacrific-
ing model performance? (iii) How does fine-tuning impact
the memory and energy consumption of AI models in prac-
tical applications? What are the trade-offs between model
size and performance when fine-tuning pre-trained models
for specific tasks?

Note: Will most of the energy consumed by AI in 2025 be
devoted to foundation models and fine-tuning even if they
only cover part of the application of machine learning ?



Note 2 about sections 14.2 and 14.1: There are some overlap-
ping ideas: (i) fine-tuning as part of a re-usability approach:
in this case it can be understood under the prism of frugal
AI because it means that one do not have to train models
from scratch on large datasets (ii) fine-tuning as an obliga-
tory step for LLMs: in this case it is rather ‘anti-frugal’ and
this fine-tuning has more of a rebound effect.

14.3 Does making an AI sparse make it fru-
gal?

Here, we use the following definition of a sparse AI model22:
Definition: A sparse AI model is a type of machine learn-
ing model that has a reduced number of model parameters
or user parameters compared to its dense counterpart that
can achieve the same task and for the same (or very close)
performance.

The creation of an AI sparse model (e.g., using pruning
methods, see Section 13.1) can result in a more frugal model
in terms of resource usage. Sparse models generally re-
quire a reduced number of parameters and less computa-
tional power, which can result in decreased memory and
energy consumption. However, it is important to note that
the efficacy of sparsity depends on the specificity of the ap-
plication and the model’s ability to maintain performance
despite reduced complexity. We may identify relevant ques-
tions and trade-offs regarding sparsity, particularly for those
interested in deploying sparse models in real-world applica-
tions:

1. How does the sparsity level in AI models affect their
performance across different sets of tasks? Are pruning
methods task-dependent?

2. Are sparse models not only computationally more effi-
cient but also more energy efficient than their dense
counterparts? We emphasize this question because
most of the engineering effort to deploy AI at scale
is focused on dense models, and sparse models require
different software architecture and hardware than their
dense counterparts. Most notably, CPUs, instead of
GPUs and TPUs, are known for being quite efficient
on sparse computations [44].

3. Are sparse AI models more or less robust to adversar-
ial attacks compared to their dense counterparts? In
particular, gradient-based adversarial attacks are the
most effective on dense models and modalities, such
as images, in contrast to discrete modalities, such as
textual data [231].

4. In which specific domains (e.g., natural language pro-
cessing, computer vision) does sparsity provide the
most significant benefits?

14.4 Should AI be resource-aware to be fru-
gal?

Definition: “Resource-aware” refers to the ability of a sys-
tem, application, or algorithm to recognize and efficiently
utilize available resources, such as CPU, memory, band-
width, and energy (for example some papers of the Lamarr

22Even if all sparse models may not have a dense counterpart.

Institute23 as [62; 32] are on this topic). In the not-too-
distant past, this approach to AI was known as ‘ubiquitous
learning’ ([39; 232] see [link]).
Being resource-aware allows AI systems to (i) optimize re-
source utilization (efficiently allocate CPU, memory, and en-
ergy, etc.), (ii) adapt to constraints (adjust operations based
on available resources, ...), (iii) fair usage of resources to-
wards existing other applications in devices.
We may outline the following related questions: (i) What al-
gorithms or techniques can be developed to enhance resource
utilization in AI systems without compromising more or less
performance? How do different AI architectures impact re-
source utilization efficiency, and what best practices can be
established? (ii) How can AI models be designed to dynam-
ically adjust their operations based on real-time resource
availability? What are the implications of resource-aware
adaptations on the accuracy and reliability of AI systems
in various applications? (iii) What (new) metrics can be
used to evaluate the sustainability of AI systems in terms of
energy consumption and environmental impact?

14.5 How to explore effective strategies to cir-
cumvent the potential pitfalls of the re-
bound effect?

Definition: The AI rebound effect is defined as the phe-
nomenon in which the efficiency or cost savings achieved
through the utilisation of artificial intelligence result in an
escalation in the consumption or utilisation of resources [19;
221; 222].
To illustrate this phenomenon, consider a scenario where
AI is employed to enhance a process and reduce expenses.
This may result in companies increasing their production
or utilising additional resources, thereby negating the initial
environmental or economic advantages. In summary, the
rebound effect underscores the notion that enhancements
in efficiency do not inherently ensure a decrease in overall
impact. Interested readers can also consult section 3.3.

14.6 What social usages could bring to the fru-
gal AI questioning?

In the context of increasing concerns about sustainability
and resource efficiency, there is increasing concern about the
use of frugal solutions and the promotion of low-tech tech-
nologies. These approaches advocate for simple, accessible,
and often less costly methods that cater to local needs with-
out necessitating complex infrastructures. By encouraging
low-cost innovation and the use of local resources, these so-
lutions promote greater social and economic inclusion. Fur-
thermore, growing awareness of environmental issues is en-
couraging consumers and businesses to adopt solutions that
minimize ecological impact, thereby reinforcing the accept-
ability of frugal and low-tech technologies as viable and re-
sponsible alternatives (related works [88]).

14.7 Frugal AI as a desirable side-effect of
resource-constrained innovation?

Indeed, the implementation of frugal AI has the potential
to result in the emergence of other priorities or require-
ments that may not have been the primary focus. To il-

23https://lamarr-institute.org/research/resource-
aware-ml/

https://hellofuture.orange.com/fr/learning-zoo/
https://lamarr-institute.org/research/resource-aware-ml/
https://lamarr-institute.org/research/resource-aware-ml/


lustrate this point, consider the context of the African mar-
ket, where the adoption of frugal AI solutions is driven by
specific challenges, including limited infrastructure, resource
constraints, and diverse user needs. In such contexts, af-
fordability, accessibility, and adaptability may take prece-
dence over advanced features. Consequently, frugal AI can
stimulate innovations tailored to local conditions, thereby
fostering economic development and enhancing service de-
livery in sectors such as agriculture, healthcare, and edu-
cation. Furthermore, it has the potential to encourage col-
laboration among local stakeholders, enhancing community
engagement and ensuring that solutions are culturally rele-
vant and sustainable.

Note: This question is also discussed in Section 5.

14.8 Will advancing learning theory result in
more frugal AI models?

A specificity of the deployment of machine learning systems
is that learning theory (i.e., theorems that give guarantees
on the predictions made by AI systems upfront) lags behind
the adoption of AI services across industries. This is not
unprecedented in the history of technology; another such
example is the steam machine, which drove the acceleration
of the industrial revolution in the late 18th century, some 20
years before Carnot and other physicists gave a precise char-
acterization of the thermodynamic laws in the early 19th
century. Returning to machine learning, this raises the ques-
tion of improved efficiency of AI systems driven by advances
in learning theory.
As an illustrative example, there is a growing research effort
toward understanding the complex interplay between mem-
orization and generalization in machine learning: general-
ization refers to the ability to give accurate predictions on
examples that have not been encountered during training,
while memorization might be required in order to correctly
classify rare instances [77], while also allowing for learning
mislabelled examples which are arguably useless in order to
solve the desired task [16; 84]. During training of a machine
learning model, memorization takes the most of the compute
time (thus, energy). This offers room for new strategies to
mitigate unwanted memorization by focusing on better data
curation.
Several research groups are examining this issue (see, for
example, the [talk at Institute for Pure & Applied Mathe-
matics (IPAM) of Gintarė Karolina Džiugaitė].

14.9 Can complex scalable systems be con-
ceived as Frugal by design?

Energy production and consumption are closely related to
environmental issues (air, water and thermal pollution, solid
waste disposal, and climate change). However, the objective
of the European Union to achieve carbon neutrality in 2050
is not achievable only by minimization of electrical energy
[87]. To conceive frugal, scalable systems, we need to take
into account the energy production/consumption aspects
(devices, network, data centres) jointly with the eco-friendly
device conception and the energy-efficient algorithms.
Two major research challenges linked with the energy con-
sumption in AI from the perspective of scalable systems are
(i) design of unified measures for energy consumption of var-
ious algorithms/hardware and (ii) evolution of unified mea-

sures sideways with new AI approaches and emerging tech-
nologies (edge-computing, quantum computing, generative
AI, Agentic AI, or automatization/virtualization of future
6G networks).
Today, there is no unified tool that evaluates the energy con-
sumption aspects for all use cases, usages, and data types,
even if recent research efforts partially address this prob-
lem (i.e., training and inference evaluations of ML methods,
[187], [209]). On the one hand, future research should focus
on designing different types of frugal devices and systems
from the hardware perspective (see Section 12 and its ref-
erences). On the other side, research needs to design frugal
methods that allow for the reuse of the existing resources
whenever possible (i.e., multi-task training, transfer learn-
ing, or few-shot learning methods). The International stan-
dards committee for AI and the environment, among oth-
ers, points out this duality between energy consumption and
AI24: AI may consume a lot of energy (for example, deep
learning, Generative AI or Agentic AI). However, it may
also reduce the overall carbon footprint due to the reuse of
a trained model in various fields.
Over the last decade, efficient methods at scale have been
studied broadly (applications such as smart cities, connected
vehicles, IoT). The energy efficiency of the algorithm has
been shown to reduce the pollution and greenhouse gas emis-
sions [87] by virtualisation, load balancing or consolidation.
However, virtualization, softwarization and automatization
of 5G and future 6G networks requires rethinking the de-
sign and usages of calculus (single data centers, hybrid or
distributed approaches) in future research. Another research
question is how to exploit the interconnection between the
Power Grid that powers the networks, by considering the
information on telecommunication network usages, that can
be used to optimize the Power Grid [234], [4]. One exam-
ple is how to use the energy metrics to predict the energy
source availability, or how to use the prediction of energy
source availability for optimal placement decisions.
The idea is also to think about complex systems that are
designed from the outset to be frugal and scalable. To this
end, they should incorporate a list of ‘best practices’. These
could include (but are not limited to): (i) minimalism: re-
ducing unnecessary features and concentrating on essential
functionality (ii) modularity: designing frugal components
that can be easily modified or replaced without revising the
whole system. The question is therefore to design a coherent
and shared list of best practices and frugal components.

14.10 Will very large generative AIs (LLMs)
and their uses one day become frugal?

The recent history of the Large Language Model (LLM) may
give (instill) the impression that the larger the artificial in-
telligence system, the more useful it is. But this narrative
obviously has a limit in terms of energy, material, infras-
tructure, network, ...[212; 25] The frugality of large-scale
generative AI, (LSGenAI) is therefore an interesting ques-
tion. This question is multifaceted since it can address: (i)
the cost to pay to train an LSGenAI (ii) the cost to pay to
use an LSGenAI (iii) the situation where LSGenAI are suit-
able25 (iv) the sustainability of such AIS (v) all other ques-

24https://www.itu.int/dms_pub/itu-t/opb/env/T-ENV-
ENV-2024-1-PDF-E.pdf

25For the fourth point, we refer the reader to the section 7
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tions related to the cost of the infrastructure needed to ‘run’
them ... The purpose here is not how to avoid an “overshoot
and collapse”26 trajectory but rather how to create LSGenAI
frugal by design? How to design them to incorporate some
interesting facets (in a multi-criteria optimization [191]) by
design as: (i) efficient architectures: utilizing streamlined
model architectures (ii) data efficiency: training on smaller,
high-quality datasets (iii) transfer Learning (iv) quantiza-
tion (v) sparse models (vi) energy-efficient hardware...

14.11 Are there ways of thinking about the
future of AI in a constrained environ-
ment?

Several scenarios for the ecological transition in 2050 emerge,
including a frugal approach, a scenario focused on territo-
rial cooperation, another focused on green technologies, and
a last one, a repairing scenario. Each of these scenarios is
expected to have different impacts on ecosystems. Conse-
quently, examining the role of artificial intelligence in these
different contexts may lead us to reassess our perspectives
Surpassing planetary limits and their impact on the climate
raises questions about the sustainability and future robust-
ness of infrastructures and materials used in AI.

• Which resource will be more critical for the future de-
velopment of AI: electricity or rare metals? What are
the physical limits of silicon chips, and how will this af-
fect the future development of AI in a context of energy
constraints?

• What strategies can be implemented to secure energy
supply in the face of upcoming disruptions, particularly
concerning AI?

• What tasks or jobs could AI replace in an energy-efficient
manner in a world facing electricity constraints?

• What would tomorrow’s business model be that could
take account of these societal and environmental chal-
lenges?

• What would tomorrow’s technologies be able to help in
a constrained environment?

• How can we think about the impact of AI on society
and the planet, by setting out governance principles
and thinking about design to impact strategies?

14.12 What could be frugal telecom network
automation?

Network automation is seen as a key for operating opera-
tor’s infrastructures, the Telco Management Forum (TMF)
has defined 6 levels of automation each requiring more ad-
vanced architecture and technologies than the previous one.
The trend to achieve level 4, is agentification and “LLM ev-
erywher” which comes at a significant environmental cost.
Hence questionable when used for massive lower level ma-
chine to machine communication. While there is already a
strong ongoing effort from an optimisation standpoint with
protocols such as Agora [151] and the ability for agents to

of the present document.
26In the frugality context the idea of designing such frugal
LSGenAI is not to try to solve the problem by producing
more energy to consume more energy.

bypass LLMs with protocols such as MCP [104], some ques-
tions will of course remain when considering sustainable au-
tomation :

• What is the right level of automation for sustainable
operations ? and how can we derive it from component
performance ?

• What is the most efficient methodology to assess sus-
tainability gains and impacts of automation ?

• Are there more frugal architectures that would still
allow level 4 automation ?

14.13 Is semantic communication a means to
frugal Agentic communications?

Context: Current multi-agent AI systems communicate
mainly through conventional formats (JSON, UTF-8 en-
coded text), limiting their interactions to human-readable
formats. However, these AI systems, particularly Large Lan-
guage Models (LLMs), internally process information in rich
semantic vector spaces. This creates an interesting paradox:
while AI agents reason and process information in structured
vector spaces, their communications are constrained to text-
based exchanges.

The AI agent landscape is expected to expand significantly,
from personal agents running on user’s devices (smartphones,
tablets) to enterprise-grade agents handling business oper-
ations, and service agents managing customer interactions.
These agents will need to operate with increasing degrees of
autonomy, making decisions and communicating with other
agents to accomplish tasks without constant human super-
vision. The widespread deployment and autonomy of AI
agents across various scales - from edge devices to cloud
services - adds another dimension to the challenges of com-
munication.

Hypothesis & Definition: It is hypothesised that future
AI agent communications will evolve beyond text-based ex-
changes towards Semantic Communications, where agents
directly transmit semantic representations (embeddings)
through telecommunication networks. Semantic Commu-
nication involves the exchange of these structured vector
representations that AI models use internally for processing
information. This hypothesis is motivated by the nature of
LLM processing, which occurs in structured vector spaces,
and the limitations of current text-based communications in
capturing the full semantic richness of AI representations.
We therefore envision the emergence of new semantic “lan-
guages” shared between AI models, borrowing from those
in-model representation spaces.

The adoption of semantic representations for inter-agent
communications presents both opportunities and challenges
for network frugality. On the one hand, these representa-
tions might enable more efficient and compact exchanges
between AI agents, as semantic embeddings can encode com-
plex meanings in structured ways, potentially reducing the
number of exchanges needed for effective communication.
On the other hand, the high-dimensionality of such repre-
sentations (typically tens of KBytes per embedding) raises
concerns about the network bandwidth required to support
these communications, particularly in scenarios involving

https://librairie.ademe.fr/societe-et-politiques-publiques/5073-prospective-transitions-2050-infographies-scenarios.html


frequent exchanges between multiple autonomous agents at
scale.

Open Research Questions on this topic (section):

• How can telecommunication networks efficiently sup-
port semantic communications between autonomous
agents at scale?

• Can we develop specific encodings for semantic rep-
resentations, similar to how audio and video codecs
optimize media transmissions?

• What are the trade-offs between semantic fidelity and
communication efficiency when compressing embed-
dings for inter-agent communication?

• What metrics can be developed to evaluate both the
frugality and effectiveness of semantic communications?

• How can we ensure interoperability between different
AI models and their semantic representations?

This list of thirteen questions, presented above, is obviously
not exhaustive. If readers are interested in raising other
ones, feel free to contact Nathalie Charbionnaud or Vincent
Lemaire (firstname.name@orange.com).
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