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ABSTRACT

Information Extraction (IE) encompasses a diverse array
of tasks in Natural Language Processing (NLP), including
Named Entity Recognition (NER), Entity Linking (EL), and
Attribute Value Extraction (AVE), all of which aim to de-
rive structured representations from unstructured text. De-
spite their shared goals, these tasks are often studied in iso-
lation, leading to redundant methods and fragmented ad-
vances. This work introduces a unified framework for IE
centered on the concept of a Span: a contiguous sequence
of tokens annotated with one or more semantic labels. By
adopting spans as the foundational unit of analysis, we unify
a broad class of IE tasks under a common formulation. We
formalize key dimensions of this span-oriented paradigm:
task formulation via span identification and classification,
evaluation through boundary- and label-sensitive metrics,
representation strategies including token-to-span encodings,
architectural components tailored to span extraction, and
modeling strategies grounded in pre-trained language mod-
els. We also identify persistent challenges, such as bound-
ary ambiguity and context-label mismatch, that cross tasks.
Through this unified lens, we synthesize and standardize a
field long divided by task-specific assumptions. The result
is a cohesive framework that supports cross-task generaliza-
tion, standardized evaluation, and principled model design,
which lays the foundation for future advances in both span-
based and general-purpose information extraction systems.

1. INTRODUCTION

Information Extraction (IE) is a foundational task in Natu-
ral Language Processing (NLP), concerned with transform-
ing unstructured or semi-structured text into structured rep-
resentations. IE systems power downstream applications
such as question answering, knowledge graph construction,
and document understanding, all of which require the iden-
tification of meaningful textual elements (e.g. entities, at-
tributes, or quantities) and their association with appropri-
ate labels or external references.

Despite these shared goals, IE tasks have historically been
developed and studied in isolation. For instance, Named En-
tity Recognition (NER) is often framed as a sequential to-
ken labeling problem; Entity Linking (EL) connects textual
mentions to knowledge base entries; and Attribute Value
Extraction (AVE) identifies slot-filler pairs from product de-
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scriptions or tabular text. While these tasks exhibit signifi-
cant overlap in formulation and modeling, the absence of a
unifying perspective has led to fragmented approaches and
duplicated methodological innovation.

At the heart of many IE tasks lies the concept of a span:
a contiguous sequence of tokens that encodes a seman-
tically coherent unit such as a named entity, numerical
value, or product attribute. Advances in pre-trained lan-
guage models, including BERT [19], GPT [11], T5 [79], and
DeepSeek [32, 53], have prompted a rethinking of how such
spans are extracted. Recent work in Unified Information Ex-
traction (UIE) [56,57] demonstrates that diverse IE tasks,
such as NER, Relation Extraction, and Event Detection,
can be reframed using shared paradigms like sequence-to-
sequence generation, span classification, or span-based ques-
tion answering. These developments challenge the tradi-
tional division of labor in IE and motivate a unified modeling
perspective grounded in span prediction.

While recent research gestures toward unification, several
gaps remain. Existing frameworks often emphasize high-
level integration but lack a systematic breakdown of what
can be unified and where task-specific distinctions persist.
The precise modeling components that generalize across IE
tasks, and those that require bespoke treatment, remain in-
sufficiently analyzed. Moreover, existing surveys tend to fo-
cus narrowly on individual tasks, such as NER [69], EL [31],
or the broader capabilities of large language models [118].
Few works synthesize these perspectives into a comprehen-
sive framework for unifying IE.

To address this gap, we introduce a span-centric taxonomy
for IE that organizes and analyzes core components shared
across tasks. Our focus is on non-overlapping, single-span
cases, which form the majority of practical IE use cases.
More complex variants, such as nested spans, discontinuous
spans, or multi-span extractions, can be viewed as natural
extensions of this core formulation, but are outside the scope
of this survey and left for future work.

This unified view enables a systematic comparison of task
formulations, label representations, model architectures,
and evaluation metrics across a diverse range of IE prob-
lems. In doing so, we aim to clarify the field’s current state,
reveal latent structure among IE tasks, and suggest path-
ways for consolidated innovation.

1.1 A Unified Framework

Unlike core NLP tasks such as tokenization, parsing, or
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Figure 1: An overview of information extraction tasks. The goal of information extraction is to identify sub-sequences within
unstructured or semi-structured text information and link them to certain class-labels, entities in a knowledge base, or other
items within some structured database. This structured information plays a central role in many downstream applications

such as question answering and recommender systems.

chunking, each of which has established formalism and tool-
ing, the span representation does not have a clear formal-
ism. The lack of a unified framework hampers model reuse
and interoperability across tasks. For example. most IE
pipelines still treat span detection and label assignment as
one-directional operations. This limits their capacity to per-
form bidirectional reasoning about text and labels, which is
a capability increasingly desirable in models that incorpo-
rate retrieval, prompting, or knowledge-grounded reasoning.

The goal of Span-Oriented Information Extraction (SIE) is
to reinterpret the fragmented landscape of IE through a uni-
fying lens: that of span prediction. We structure this paper
around three perspectives that correspond to the primary
dimensions of SIE: (1) information extraction tasks as span
prediction problems, (2) span-based evaluation, (3) model
architectures designed to extract and label spans, and fi-
nally, because this is a unified model, (4) transformations
between model architectures.

1.1.1 Tasks as Span Prediction

At the heart of SIE is the proposition that a wide range of
IE tasks can be unified by treating them as span prediction
problems. Tasks such as Named Entity Recognition (NER),
Entity Linking (EL), and Attribute Value Extraction (AVE)
may differ in surface formulation, but they all involve iden-
tifying spans and associating them with predefined labels.

Recasting IE tasks in terms of span prediction reveals their
structural commonalities. For instance, both NER and AVE
can be modeled as identifying text spans and assigning class
labels (e.g., PERSON, PRICE); EL additionally maps spans to
knowledge base entries. Even question answering tasks like
Machine Reading Comprehension (MRC) can be reframed
as extracting an answer span from a given context. The
variation across tasks is often limited to differences in span
classes, input conditioning, or whether the span is known or
latent. By shifting the focus from bespoke task formulations
to a unified span framework, SIE enables methodological
reuse and cross-task generalization.

1.1.2  Evaluation through Span-Based Alignment

A unified perspective on IE tasks calls for a correspond-
ing unified evaluation methodology. Under SIE, evalua-
tion is framed in terms of span identification and classifica-
tion accuracy. This enables consistent benchmarking across
tasks, facilitating direct comparison of systems regardless of
whether the task is framed as entity recognition, slot filling,
or span-based question answering.

Span-level evaluation emphasizes the quality of predicted
spans in terms of boundary correctness and label accuracy.
Common metrics such as span-level F1 score and overlap-
based precision-recall can be applied across all tasks reimag-
ined under SIE. This approach not only simplifies compar-
ative analysis but also draws attention to shared challenges
such as handling ambiguous boundaries, overlapping spans,
or label sparsity. Section 3 of this paper elaborates on a
standardized evaluation framework grounded in span-level
metrics.

1.1.3  Taxonomy of Information Extraction Features

Span-oriented information extraction models rely on a range
of features that encode information at different levels of
granularity. These features provide the representational
foundation for span identification and classification.

We organize these features into three categories:

e Token-Level Features: These include contextual-
ized token embeddings from pre-trained language mod-
els (e.g. BERT, RoBERTa), part-of-speech tags, or
syntactic cues. Such features capture local semantics
and serve as the base layer for span construction.

e Span-Level Features: These involve representations
derived from contiguous token sequences, such as start
and end indicators, span length, pooled embeddings
(e.g. mean or max over token embeddings), and span
position encodings. Span-level features are essential
for tasks like classification or scoring.

e Class-Level Features: These refer to representa-



tions of span labels themselves, such as class embed-
dings, textual descriptions, or prototype vectors, espe-
cially useful in open-world or zero-shot settings where
labels are semantically meaningful.

Our goal is to integrate these feature types into a unified
span representation, which then feeds into downstream pre-
diction modules. The selection and combination of these
features significantly affect a model’s ability to generalize
across span types, domains, and tasks.

1.1.4 Model Transformations among Information Ex-
tractors

Having established the core features used in span-oriented
IE, we now consider the transformations these features un-
dergo within different model architectures. Despite the sur-
face diversity in IE systems, they often follow a shared trans-
formation pipeline from raw input to labeled spans.

We identify three key components of this pipeline:

1. Training Objectives: Objectives range from span
classification (predicting a label for each span) to span
boundary detection (predicting start/end indices) to
joint models. Classical sequence labeling (e.g. BIO
tagging) and modern span selection techniques (e.g.
span scoring or span ranking) fall into this space.

2. Inference Strategies: Inference may involve enu-
merating all candidate spans up to a maximum width,
scoring each span-label pair, and selecting those above
a confidence threshold. More advanced systems use
constrained decoding or joint inference over multiple
spans.

3. Span/Label Duality: A core challenge across tasks
is the mismatch between token-level representations
and span-level outputs. Additionally, many tasks, es-
pecially in zero-shot or open-world settings, require a
more flexible alignment between surface spans and se-
mantic labels. This duality is exemplified by cases like
Wikification, where a string (e.g. Tim Cook) must be
matched with a canonical entity (wiki/Tim_Cook) that
encodes rich contextual meaning.

This span/label duality suggests that spans should be
treated not merely as outputs, but as bidirectional con-
structs: they are both the textual surface forms and the
semantic identifiers. Embracing this dual nature can lead to
more flexible and generalizable IE models, especially when
paired with techniques such as prompt tuning, generative
decoding, and retrieval-based linking.

1.2 Research Implications and Applications

By unifying a diverse array of Information Extraction (IE)
tasks under the span-oriented framework, this work resolves
long-standing fragmentation in the field. Prior surveys of-
ten focus narrowly—on Named Entity Recognition, Rela-
tion Extraction, or generative models—without connecting
task-specific innovations to broader trends. In contrast, the
Span-Oriented Information Extraction (SIE) perspective of-
fers a cohesive foundation for evaluating, comparing, and
extending IE systems. It supports standardized benchmark-
ing through consistent span-level metrics, enabling more
rigorous evaluation across tasks such as NER, EL, AVE,
and MRC. The framework also facilitates cross-task trans-
fer: techniques for handling span boundaries, ambiguity, or

open-set classification can be reused across domains, accel-
erating innovation. As large language models (LLMs) con-
tinue to blur the lines between extraction and generation,
SIE complements these systems by offering structure, in-
terpretability, and factual grounding—especially in hybrid
architectures that combine symbolic extraction with gener-
ative reasoning. Finally, STE benefits multiple audiences: it
clarifies research boundaries for NLP practitioners, supports
general-purpose model development for the broader Al com-
munity, and simplifies instruction for educators by offering
a single, principled formulation of IE. In doing so, it lays the
groundwork for a more unified, scalable, and interpretable
future for information extraction.

1.3 Formal Definition of a Span

Let a document d be represented as a sequence of tokens:
d= <t17t27 o 7tk>7

where each ¢; is a token and k = ¢(d) denotes the total
number of tokens in the document. A span is formally
defined as a tuple s = (b,e,c), where b and e are token
indices such that 1 < b < e < {(d), and c is a class label or
set of labels assigned to the span. The indices (b, e) define
a contiguous subsequence of tokens in d, corresponding to a
surface form in the original text.

A span thus encapsulates a dual structure:

e A surface form: the contiguous subsequence
(tv,-..,te), which serves as the textual expression of
the information unit.

o A semantic label or set of labels ¢ € C, denoting the
type or role assigned to the surface form (e.g. PERSON,
LOCATION, PRICE).

The task of Span-Oriented Information Extraction (SIE) can
then be described as identifying the correct set of spans
{s1,82,...,8n} from d, including both accurate boundary
identification (b, e) and appropriate label assignment c.

We distinguish between two settings based on the nature of
the label space C:

1. Closed-world IE: The label set C' is predefined and
finite. Each span must be assigned one or more labels
from this fixed set. This setting is common in tasks
such as NER and AVE.

2. Open-world IE: The label set C is not fixed in ad-
vance. Labels may be dynamically assigned from an
open vocabulary, external knowledge base, or gener-
ative component. This formulation appears in tasks
such as zero-shot entity linking or question answering.

This formalization is consistent with implementations in
popular NLP libraries such as SpaCy [35] and Stanford
CoreNLP [61], both of which treat spans as first-class ob-
jects that associate contiguous text with semantic roles.

By establishing spans as the central abstraction, we unify
a wide range of IE tasks, regardless of their original formu-
lation, under a common representation that supports com-
parison, composition, and generalization.

1.4 Road Map

The remainder of this paper develops a unified framework
for span-oriented information extraction by examining the



Table 1: Overview of Span-Oriented Information Extraction Tasks

Apple CEO Tim Cook sold his Texas house.

Task Name Span Req. Span Class Span Class Example
Entity Disambiguation (ED) v Entity wiki/Tim Cook, wiki/Texas
Entity Linking (EL) Entity wiki/Tim_Cook, wiki/Texas
Entity Typing (ET) v Fine-grained Type Businessman, State

Named Entity Recognition (NER)
Attribute Value Extraction (AVE)
Machine Reading Comprehension (MRC)

Coarse-grained Type PER, LOC
Attributes CEO: Tim Cook
Reading Question Tim Cook

field along three core dimensions: task formulation, eval-
uation methodology, and model design. We begin by sur-
veying major IE tasks such as Named Entity Recognition,
Entity Linking, and Machine Reading Comprehension and
demonstrate how they can be recast as instances of span
identification and labeling. We then introduce a span-based
evaluation framework that addresses boundary fuzziness and
label ambiguity, supporting more consistent and informative
comparisons across tasks. Finally, we present a two-part
model analysis: first, a taxonomy of the token-, span-, and
class-level features that underpin most systems; and second,
a view of IE models as transformation pipelines that con-
vert these features into labeled spans. Together, these per-
spectives reveal a high degree of structural similarity across
IE systems, supporting the case for a unified span-oriented
paradigm.

2. TYPES OF SPAN-ORIENTED INFOR-
MATION EXTRACTION TASKS

There are a variety of information extraction tasks that are
defined based upon the needs of the system and the data
available. These tasks have been given various names and
descriptions in the literature, but they all share the same
basic definition of a span.

Given a sentence in some document, for example the sen-
tence, "Apple CEO Tim Cook sold his Texas house", dif-
ferent varieties of information extraction would seek to la-
bel different sub-sequences having one or more classes, e.g.
Apple as a company, Texas a US state. Among these va-
rieties are: (1) Entity disambiguation (ED) [34], (2) En-
tity Linking (EL) [39], (3) Entity Typing (ET) [36], (4)
Named Entity Recognition (NER) [96], (5) Attribute Value
Extraction (AVE) [122], (6) Machine Reading Comprehen-
sion (MRC) [83].

Table 1 provides a non-exhaustive list of different informa-
tion extraction tasks and a specific example of that task.

2.1 Entity Disambiguation

In cases where the surface form is given, either through text
matching or some other entity identification task, what re-
mains is to match the surface form with the appropriate
class label. In the following examples we identify the sur-
face form with a beginning and end token-index of the input
where the first token is indexed at 0.

Entity disambiguation is so named because the task is
mostly to determine which specific entity, if there are many
similarly-named entities, that surface form represents. To
do this, ED systems rely on the context to make their deci-
sions. The difficulty of ED is that entities typically have a

TASK: Entity Disambiguation
INPUT: Apple CEO Tim Cook sold his Texas house
INPUT: [(2,3,7), (6,6,7)]
OUTPUT: [(0,0, wiki/Apple_Inc.), (2,3, wiki/Tim_

Cook), (6,6, wiki/Texas)]

giant number of classes. Subsequently, rare and infrequent
entities are difficult to disambiguate [5,86,88,105].

2.2 Entity Linking

In cases where the surface form is not pre-defined, the posi-
tion of the spans and the class of the span (i.e. the entity)
must both be extracted. Compared to ED, EL is much more
difficult. EL requires jointly identifying non-standard sur-
face forms from the input text and assigning the correct
labels. As a result ED systems are typically more precise,
while EL systems observe redundant performance drops in
the same datasets [12,39,86,97].

TASK: Entity Linking
INPUT: Apple CEO Tim Cook sold his Texas house
OUTPUT: [(0,0,wiki/Apple_Inc.), (1,1,wiki/Chief_

executive_officer), 2,3, wiki/Tim_

Cook), (6,6, wiki/Texas)

The EL task essentially performs the surface form identifica-
tion sub-task and the ED task simultaneously. This provides
greater freedom to the system so that additional context of
any found-span might be used to find more spans. As a re-
sult, EL systems generally have greater coverage, but at the
expense of precision.

2.3 Entity Typing

There are also cases where the end-user does not seek a spe-
cific entity-entry in some knowledge base, but rather seeks
to know the specific (i.e. fine-grained) types of entities that
are resident in some span [17,71].

TASK: Entity Typing
INPUT: Apple CEO Tim Cook sold his Texas house
INPUT: [(07 07 ?)7 (27 37 ?)7 (67 67 ?)]

OUTPUT: [(0,0, Company), (2,3, Businessman),
(6,6, State)]
The ET task is a slightly relaxed form of the ED task, where
the number of classes is not as large, but can still be exten-
sive depending on the type-granularity that the user seeks.
Like in the ED task, because the beginning and ending in-
dexes of the spans are provided as input, this task typically
has high precision at the expense of coverage. However,
evaluation of the ET task can be difficult because properly
aligning the right span-label that matches the ground-truth



granularity can be difficult. Indeed, previous work has found
that reasonable (and sometimes arguably more-correct span-
labels) are often counted as incorrect in ET evaluation [17].

2.4 Named Entity Recognition

One of the first information extraction tasks from the MUC
workshops described above was the NER task. This task
seeks to identify entities from a sentence and, almost as a
bonus, also labels the entities into one of three or four broad
types; typically PER, ORG, and LOC representing person, org-
anization, and location entities respectively.

TASK: Named Entity Recognition
INPUT: Apple CEO Tim Cook sold his Texas house
OUTPUT: [(0,0, ORG), (2,3, PER), (6,6, LOC)|

The primary difficulty of the NER task is the identification
of the span’s starting and ending indexes; once the surface
form can be identified, the class label is rather straightfor-
ward because the class label set is typically very small and
contains only coarse-grained entity types. However, because
NER systems are typically trained on a small set of coarse-
grained entity types, many spans that would be easily dis-
covered with EL systems (e.g. animals, technology, works
of art) are not easily binned into one of the coarse types.

2.5 Attribute Value Extraction

In instances where many sentences describe a general set of
items, like, for example, descriptions of episodes on a stream-
ing service, item descriptions in an online game, or groceries
available on an e-commerce website, the entities themselves
are not of interest. Instead, the AVE task seeks to extract
the collective values corresponding to attributes of interest
from the descriptive document(s). Nevertheless, AVE can
still be views as a span-oriented information extraction task.
Continuing the running example, if we imagine a collection
of sentences discussing technology news, then the AVE task
might extract the corresponding technology leaders as fol-
lows:

TASK: Attribute Value Extraction
INPUT: Satya Nadella says that Microsoft products
will soon connect to OpenAl.
Apple CEO Tim Cook sold his Texas house.
Jensen Huang, head of NVIDIA, announces
the launch of DGX GH200.
OUTPUT: [(0,1, CEO), (13,14, CEO), (19,20, CEO)]

2.6 Machine Reading Comprehension

In some cases users seek to extract spans related to some
free-text question. Although the MRC task is unlike many
span-oriented information extraction tasks, it still requests
the same fundamental output: a span of tokens and a class.

TASK: Machine Reading Comprehension

INPUT: Apple CEO Tim Cook sold his Texas house.
INPUT: Q: Who is the CEO of Apple?
OUTPUT: [(2,3, Who is the CEO of Apple?)]

Like in the AVE task, the MRC task contains a beginning-
and ending-index and as well as a class. In this particular
case, the class is a direct restating of the input question.
This is an important consideration. This may be best ex-
plained with an analogy to the NER task. If we re-consider

the NER task to be an MRC task, then the question asked
of the NER system is the entity-label:

TASK: Named Entity Recognition
INPUT: Apple CEO Tim Cook sold his Texas house
INPUT: Q: PER
OUTPUT: [(2,3, PER)]

Here we see that the answer to the MRC task is not the
class label, but is instead denoted by the span indices which
reveal the answer to be Tim Cook, who is in Person.

The above list of span-oriented information extraction tasks
is by no means exhaustive, but these examples are meant to
be representative of our philosophy: by re-imagining infor-
mation extraction tasks as systems that output spans, then
these systems can be considered natural analogs of one an-
other. With this in mind, the means by which these various
information extraction systems are evaluated can be viewed
from a more coherent perspective too.

3. EVALUATION OF SPAN-ORIENTED IN-
FORMATION EXTRACTION

The most common way to evaluate information extraction
systems is to use the standard precision, recall and F} met-
rics [89]. However, any metric that evaluates spans de-
serve a more-thorough consideration. This is because the
groundtruth span may not exactly line up with the predicted
span, yet still be close-enough to warrant a true-positive
judgment. Likewise, the class-label(s) within the predicted
spans might not exactly match the groundtruth span, yet
still be close-enough to warrant leniency. Because of these
consideration several metrics and metric-variants have been
developed to handle these difficult cases.

The Fj metric was originally intended as a way to balance
the precision and recall (i.e. coverage) of machine learning
system. When the 8 = 1 then the precision and recall values
are evenly weighted in the F-score. Lower values for 8 give
more weight to the precision metric and wvice versa. Unless
otherwise specified, systems typically set 5 = 1 yielding the
well-known F}-score.

The Fi-score uses precision and recall metrics, which them-
selves require some notion of binary true and false predic-
tions. As applied to span-oriented information extraction,
this creates a rigid requirement that any token can belong
to at most one span and that a span must exactly match
the groundtruth to be considered a true-positive instance.

In the simple case where there are only labels (e.g. yes/no,
on/off), the Fi-score provides a meaningful, although rigid
evaluation metric. However, as noted above, most of the
class-sets in information extraction are enormous, having
thousands (or hundreds of thousands) of classes. In such
cases, a decision needs to be made on how to calculate cer-
tain mean-averages. The two most common decisions are
called (1) the micro Fi-score and (2) the macro Fi-score.

3.1 Micro F;-Score

The micro Fi score is widely recognized as the standard
evaluation metric for rigid NER. The notion of rigidity in
this instance denotes that any token of the input document
can belong to at most one span and that a true-positive
instance must match the groundtruth span exactly.



Formally, for each class ¢* € C and for a groundtruth set
s = (b,e,c) € S and for a set of predicted span instances

3= (b,é,¢) € S, the number of true positives (TP.+) is:

TPe= > Y Jl(b:ime:éAc:a:c*) (1)

(b,e,c)€S (b,e,e)es

Likewise we count the number of false negatives (FN¢+) and
false positives FP.« as:

FNee = > <1—

(b,e,c)es

(b,e,8)eS

FPe = > (1—

(b,e,¢)es (3)

> l(b:mezém:é:c*w

(bye,c)eS

Note that some tasks, like MRC and AVE sometimes re-
lax the indicator function 1(-) so that the beginning- and
ending-indexes need not exactly match, but that the to-
kens denoted by these indexes match: 1(substr(b,e) =
substr(b,é) A ¢ = é = ¢*). For example, in MRC we do
not need to know that Tim Cook begins and ends with to-
kens 2 and 3, only that the tokens between indexes 2 and 3
match the groundtruth answer.

Then, to obtain the micro Fi-scores the TPs, FNs, and FPs
are summed across the various classes and substituted into
the standard precision and recall metrics to obtain micro-
precision and micro-recall.

E e TP~
micro-Prec = £ ;
ZC* GC(TPC* + FPC*)
Z *cC TP~
micro-Rec = = ; (4)
ZC* EC(TPC* + FNC*)
. 2 X micro-Prec x micro-Rec
micro-F; =

micro-Prec + micro-Rec

3.2 Macro F;-Score

The micro F}-score is a natural way to sum up the successes
and errors of the model predictions. However, this simple
solution can be easily swayed in the likely case that the class
labels are unbalanced, i.e. certain labels occur much more
frequently than others. In this situation, a class-based pre-
cision and recall measurement can be calculated as follows:

Prec. — — TPer
7 TP + FP.+’
TP~
- =—_—°" 5
Rece = mp PN (5)
Py = 2 X Prece» x Recex

’ Prec.+ + Recc*

Then, the overall macro Fi-score is the arithmetic mean of
F1 scores across all the individual classes as follows:

ZC* Fl,c*
Tigl (6)

macro-F; =

3.3 Exact Match Evaluation

The macro and micro metrics described above require exact
matches of the beginning-index, ending-index, and the class
I1b=bAe=¢éANc=2¢=c") in order to count towards a
true positive instance.

Also note that the string matching function 1(substr(b, e) =
substr(b, &) A ¢ = ¢é = ¢*) commonly used in the AVE and
MRC tasks do not require exact matches of the indices, but
do require exact matches of the sub-sequences represented
by the indexes.

TASK:
INPUT:

NER/MRC
Apple CEO Tim Cook sold his Texas house
Tim Cook announces new M2 chip.
GT: [(2,3, PER)]|
OUTPUT: [(8,9, PER)|

In the example directly above the extracted span (8,9, PER)
does match ground truth span in the MRC and AVE task,
but would not match the ground truth (GT) span in NER,
EL, ET, and ED tasks.

3.4 Relaxed Match Evaluation

Exact matching requirements are often criticized for impos-
ing too strict of a requirement onto the system. It is of-
ten the case that a sub-sequence or super-sequence of the
ground truth span is an equally valid match. Likewise, in
fine-grained ET or ED tasks, a close, but still inexact match
between the predicted class ¢ and the ground truth class ¢*
could also be equally valid (and our experience shows that
sometimes the predicted match is arguably better than the
ground truth match) [22]. To allay this criticism, the use of
relaxed (i.e. partial) span matching is also used in evalua-
tion [25,29,39,88]. Under a relaxed span matching regime,
if a predicted span has the same class as one of the ground
truth spans and the span indices intersect, then that predic-
tion is counted as a true positive.

TASK: NER
INPUT: Apple CEO Tim Cook sold his Texas house
Tim Cook announces new M2 chip.
GT: (2,3, PER)]
OUTPUT: |[(3,6, PER)|

In the example directly above, the extracted span repre-
senting the subsequence Cook sold his Texas would count
as a true positive for the ground truth span representing
the sequence Tim Cook. This additional tolerance almost al-
ways results in a positive performance shift; however, partial
matching may sometimes be too lenient—as shown in the ex-
ample above. Therefore, strict span matching remains the
standard regime used to evaluate span-oriented information
extraction tasks.



Table 2: Matrix of Information Extraction Tasks by their Transformation Type

Transformation | NER ED ET AVE MRC
Sequential Labeling [19, 37, 59, [5,15,39,97] [20,38,92]
108] [106,112,122]
Token Prototype | [36] [10, 110] [10, 28], 107, [60] [112, 114]
,110
Token-pair Classification | [48]
Span Classification | [3,52,91,95, [1,15,28,80, [16,39,97] [17,18,68] [23] [6,66,113]
115,123] 81,105,107
Span Locating | [51,90] [7,30] [117] [23,100] [85,120]
Span Generation [26, 58, 104, [12] [12] [21] [46,76,101]

111]

4. TAXONOMY OF INFORMATION EX-
TRACTION FEATURES

In this section, we begin to consider how information extrac-
tion systems use natural language to create a model from
which information can be extracted. To that end, we will
summarize the features commonly gleaned from (1) tokens,
(2) spans, and (3) span classes.

Because natural language is digitally represented as a se-
quence of bytes in its most basic form, we consider that to be
the lowest-level representation of written (digital) language.
From that form natural language tokenizers turn bytes into
words (or sub-words) from which sentences, Tweets, para-
graphs, posts, articles, stories, and narratives are formed.
Information extraction tasks typically operate at the token-
level; by our definition, these systems output a span, which
is a sequence of one or more words and a class. Each of
these levels: the token, the span, and the class all have in-
formation that can be used in the construction of a natural
language model. This section will briefly highlight each.

4.1 Token Features

Most natural language is grouped into tokens—typically
words. These tokens are fundamental element in commu-
nication; dictionaries, for example, are one source of under-
standing for these tokens, as are encyclopedias and thesauri.
The same is true in natural language processing. Because
tokens are the basic elements, crafting the corresponding to-
ken features to be flexible and generalized is an important
consideration for most tasks.

4.1.1 Linguistic Token Features

Many token features are linguistic in their nature. For ex-
ample, part-of-speech tags are one of the earliest token fea-
tures used to distinguish word classes (e.g. noun, verb, ad-
jective, and adverb) [40]. The abstract syntax tree is an-
other linguistic feature that transforms plain text into a
self-referential tree structure [70]. These approaches pro-
duce symbolic properties and are easily interpreted by hu-
man beings. However, linguistic features have three signif-
icant limitations. First, they do not directly provide infor-
mation of interest in to most practical applications. For
example, although knowing whether a token is a noun or a
verb or modifies some other token can be useful in down-
stream tasks, this is not directly useful in many applica-
tions. Second, training linguistic models requires an enor-

mous amount of expert human annotations [14,62]. In the
decades since linguistic token features were first proposed,
many datasets have been created, but these features con-
stantly require updating. Third, even perfect labels result
in performance limitations on many IE tasks [14,107,108].
This is because shallow, token-based information represents
a limited view of the deeper intent and meaning within nat-
ural language [47,89].

4.1.2  Pre-trained Token Features from Language
Models

With the development of language models (LMs), pre-
trained word embeddings have become a primary source of
token features. The goal of any LM (large or small) is to
model the probability distribution over sequences of tokens.
That is, given a document d composed of a sequence of to-
kens d = (ti,t2,...,tc,...,tyaq)), an LM provides for the
estimation of the probability distribution of any token t. by
utilizing other contextual words in the sequence as follows:

p (tc‘tl, tz, e 7tc_27 tc_1, tc+1, tc+2, e ,tg(d)) (7)

Constructing LMs has been one of the most fundamental
and important tasks for the NLP community. So called large
LMs (LLMs) are able to scale because they are trained in
a self-supervised regime without any human annotation at
all. As a result, LLMs have shown the ability to learn token
features from a wide variety of documents from different do-
mains. Early pre-trained word embeddings were based on
the bag-of-word or skip-gram models; which is best repre-
sented by word2vec [65], GloVe [72]| and fasttext [9]. With
the development of text Transformers, self-supervised to-
ken features has been widely adopted and even supplanted
most alternatives in natural language processing. The two
most representative projects in this category are (1) the
GPT series having a left-to-right language model [11,77,78]
and (2) the BERT series with masked language modeling
(MLM) [19]. The broad pre-training with self-supervised la-
bels that these LLMs undergo is typically sufficient for most
tokens to obtain robust features [19,65]. Therefore these
pre-trained LLMs can also be adapted to tackle information
extraction tasks. This is also important because information
extraction tasks typically have limited and biased training
data [25,96], and it is difficult and even inapplicable to em-
ploy self-supervised training to the information extraction
tasks [11,19, 58].



4.1.3 Character Features

Our definition of a span uses tokens as the base type. How-
ever, in some cases the tokens are unable to provide a useful
properties of characters. In these cases, it may be beneficial
to consider individual characters as extra supplemental fea-
tures. These character features can then be used as extra
learning parameters to improve performance in some spe-
cific instances including Chinese language modeling [64,94],
and in fields that commonly use acronyms and initialisms
like chemistry [24,102], biology [45], and law [13].

4.1.4 Token Sequences

Because natural language is (digitally) expressed in a se-
quence of bytes or tokens, there has been a large effort
to model these sequences [47, 86]. Arguably the most
well known model for token sequences is the transform-
ers [19,98], although other architectures like the recurrent
neural network (RNN) [33,50], convolutional neural net-
work (CNN) [44,93], and the point network [99,116] have
been used as well. Alternatives to these neural models tend
to use probability graphic models to model token depen-
dencies with implementations such as the hidden Markov
model (HMM) [67], the maximum entropy Markov model
(MeMMs) [63] and the conditional random field (CRF) [41].

4.2 Span Features
4.2.1 Span Embeddings

A span defined as sequence of one or more tokens may there-
fore have a variety of representations. Typically, span em-
beddings are built on top of token features. For example,
Chen et al. directly used the word embedding of the first
token to represent the span features [15], and Tan et al.
used the concatenation of word embeddings of the first and
last tokens [95]. Otherwise, single-pass frameworks use an
averaging over a pool of token embeddings to form span
embeddings [4,5]. The PURE model further learns a length
embedding as part of span embeddings [123]. The W2NER
model uses a convolutional layer and an LSTM jointly to
fuse token embeddings into span embeddings [48].

In addition to formulating span embeddings based on to-
ken embeddings, another approach is to create span embed-
dings from scratch as a different pre-training task. Early
work on this trajectory extends the word2vec idea to learn
span embeddings from contextual span-token and span-span
contextual correlations [107,109]. Later work in this area ex-
tended the mask language model of BERT to generate span
embeddings as a co-training task within language model-
ing [10,16,108,110].

4.2.2  Span Sequences

Just as token features can be modelled as token sequences,
span embeddings can likewise be modelling as a sequence
of spans. Understanding span sequences is critical in many
information extraction tasks. For example, in entity dis-
ambiguation one of the primary features used to select
span candidates is the context-tokens and other neighbor
spans that surround the span in the same sentence. For
example, the tokens Apple and CEOQ in the running exam-
ple in Section 2 could help to disambiguate Tim Cook as
wiki/Tim\_Cook from some another entry with a similar
name. Likewise, the identification of wiki/Tim_Cook may

aid in the recognition that Apple refers to wiki/Apple_Inc.
and not some other entity. Formally, most previous frame-
works consider the training objective of a common classifi-
cation model [28,39,73,74] adapted in Eq.(8):

g(s, c) = Z‘P(Siaci) +D U(ei ) (8)

1<j

where the contextual span scores ®(s;,c;) for each span s;
and class s; and the span-span correlation scores ¥(c;,c;)
for the predicted classes ¢; and c¢; are both used to train the
model. Modelling span sequences tends to work well when
the number of classes is small. In this scenario, adjacent
and correlated tokens are typically sufficient to determine
the span class. However, when the number of classes is large
like in the fine-grained ET task and the EL task, contextual
words may not be enough to determine the corresponding
span classes [28, 39,80, 81].

4.3 Span Class Representations

Most information extraction models produce spans where
the class element is a simple id or perhaps a pointer (e.g.
PER, businessman, wiki/Texas). However, many span
classes contain metadata such as text descriptions and even
relationship information (e.g. in the case of Wikipedia).
These span classes can be used to add additional con-
text to possibly improve performance. Yet another op-
tion is to use pre-trained methods to obtain representa-
tions for each span’s class. For example, the TagMe sys-
tem used hyperlinks among pages to learn a class represen-
tation [27]; likewise, wikipedia2vec [107] and deep-ed [28§]
extended word2vec to learn token and class correlations. In
a similar way, ERNIE [119] and LUKE [108] extended the
BERT masking language model to entity disambiguation in
order to obtain better token and span class representations.

S. MODEL TRANSFORMATIONS AMONG
INFORMATION EXTRACTORS

Having previously identified the various information extrac-
tion tasks and their features, the next piece of the puzzle
is to describe how spans are transformed by different infor-
mation extraction models. This section presents a different,
yet unifying, perspective on information extraction by con-
sidering the various transformations that a span undergoes
for different information extraction tasks.

In their attempt to tackle different information extraction
tasks, different information extraction models employ var-
ious transformations to the spans. These transformations
can be grouped into six types of transformations: (3.1.1) se-
quential labeling, (5.1.2) token prototyping, (3.1.3) token-
pair transformation, (3./.4) span classification, (3.1.5)
span locating, and (5.1.6) span generation.

As we shall see, unifying these different tasks reveals the im-
portance of the various transformations. For example, the
sequential labelling transformation commonly used in the
NER task appears to be vastly different than the two-step
transformation used in the EL task. However, as we shall
see, because these tasks share the same input and output,
these transformations do naturally generalize to other trans-
formations and are actually swappable. Despite their in-
terchangeability, the taxonomy of different transformations



TASK:

NER + Token-Pair Classification

INDEX 0 1 2 3 4 5 6 7
INPUT: | Apple CEO Tim Cook  sold his Texas house

0 Apple | NNW
1 CEO
2 Tim NNW
3 Cook THW
4 sold
5 his
6 Texas NNW
7 house

OUTPUT: [(0,0, ORG), (2,3, PER), (6,6, LOC)]

Figure 2: Token Pair Transformation

(see Tab. 2 for details) does come with trade offs for different
tasks. For example, the sequential labelling transformation
decomposes span-labels into token-labels where each token
assigned a label. This transformation ignores token local-
ity features, which could be important in accurately finding
span boundaries, but is nevertheless fast and easy to train.
In this section we describe different model transformations
and briefly discuss their trade offs.

5.1 Transformation Approaches

5.1.1 Sequential labeling

Sequential labeling (i.e. token classification) is the most
traditional and common transformation used in NER [37]
as well as other information extraction tasks [5,112,122].
The core idea of sequential labelling is to directly transform
spans into token-wise classes labeled with the Begin, Inside,
Outside, End (BIOE) schema, where each label represents
a token that begins, is inside of, ends, or is outside of some
span. This schema has been expanded to also include other
labels, like Left and Right (L/R), to represent tokens to the
left and right of a span [47].

TASK: NER + Sequential Labelling
INDEX: 0 1 2 3
INPUT: Apple CEO Tim Cook
TRANS: B-ORG (0] B-PER E-PER
INDEX: 4 5 6 7
INPUT: sold his Texas house
TRANS: (0] (0] B-LOC (0]

OuUTPUT: [(0,0, ORG), (2,3, PER), (6,6, LOC)]

Continuing the example above, the sequential labelling
transformation uses the B and E labels to identify the begin-
ning and end of the span encompassing Tim Cook one token
at a time. Those tokens that are outside of the span are la-
beled with O. Then, during inference, token classes are first
labeled and then span labels are obtained by concatenating
one or more continuous tokens belonging to the same class.

Note that the I and E labels can be missing in a span when
a span has only one or two tokens.

5.1.2 Token Prototyping

Token prototyping considers each span to be a sequence of
tokens, which is then mapped to the same class [36,112,114].
Unlike sequential labelling, which labels tokens one at a
time, token prototypes (e.g. PER, Businessman) are com-
puted with locality and clustering based objectives. During
inference, the tokens classes are represented as prototypes
and embeddings are computed for each token. Then tokens
that are close in the embedding space are clustered together
and the corresponding classes are obtained by selecting the
closest prototype.

TASK: NER + Token Prototyping
INDEX: 0 1 2 3
INPUT: Apple CEO Tim Cook
TRANS: ORG O PER PER
INDEX: 4 5 6 7
INPUT: sold his Texas house
TRANS: (0] (0] LOC (0]

OUTPUT: [(0,0, ORG), (2,3, PER), (6,6, LOC)]

Because this is a token-oriented approached, the tokens Tim
and Cook, from the example above, are both individually
assigned the PER label. Of course, this provides some ambi-
guity: it is unclear whether Tim Cook is a single person or
two persons Tim and Cook. Typically, a post-processing step
combines labels of the same type into a single multi-token
span, but this isn’t always desirable.

5.1.3 Token-pair Classification

In token-pair classification, and as the name suggests, span
labels are transformed into relationships between two to-
kens. During inference, each token-pair is labeled as one of
an assortment of classes that describes the relationship be-
tween the two words within the same span as in illustrated

in Fig 4.2.1.



TASK:

NER + Span Classification

INDEX 0 1 2 3 4 5 6 7
INPUT: | Apple CEO Tim Cook sold his Texas house
0 Apple | ORG
1 CEO
2 Tim PER
3 Cook
4 sold
5 his
6 Texas ] LOC
7 house
OUTPUT: [(0,0, ORG), (2,3, PER), (6,6, LOC)|

Figure 3: Token Span Transformation

For example, the W2NER model uses labels Next-
Neighboring- Word (NNW) to describe the relationship be-
tween pairs of words within a single span [48]. Applying this
model to the running example produces the transformation
above where blue cells represent the window size permitted
by the model. Here the token-pair Tim—Cook is labeled with
an NNW class describing Cook as the next-neighboring-word
of Tim.

Although this transformation produces a sparse matrix with
#? possible labels, it does permit non-contiguous depen-
dency references to be labels produced in certain circum-
stances. Typically these additional labels are labeled as a
Tail-Head- Word (THW) in the bottom-diagonal. The above
illustration shows an example THW that, depending on the
task, might be expanded THW-PER to indicate that the span
refers to a person.

5.1.4 Span Classification

The core idea of the span classification transformation has
two parts: (1) span candidate generation and (2) span la-
bel assignment. There are many ways to generate span
candidates. The simplest is to enumerate all the possible
spans up to certain window-lengths (i.e. n-grams) [91,123].
The window-length is normally a constant which is typi-
cally less than 5 in most tasks. Another way to generate
spans is to learn a specific span generation model. For exam-
ple, many of the token-oriented transformation approaches
can generate span candidates with high-probability bound-
aries [95,121]. In another vein, the Ask-and-Verify model
uses a machine reading comprehension module to generate
span candidates by finding potential boundaries from tokens
with high predicted probabilities [23]. Span candidates can
also be generated utilizing external data and models. For
example, most existing entity disambiguation methods uti-
lize rule based methods such as string match and frequency
statistics [4, 5, 16, 28,39, 43,97]. Another popular way is
to use retrieval models like TF-IDF [3], BM25 [55], phrase-
mining [87,115], or dense retrieval [105] among many others.

After span candidates are generated, the goal of the follow-
ing span label assignment step is to find a mapping function

to select spans from the most promising span candidates and
provide a class label. One common method is to employ
a span-oriented classifier to distinguish positive span can-
didates from negative span candidates by screening all the
span candidates [23,91,95,121]. One particularly compelling
model, Locate-and-Label, which was inspired by two-stage
object detection methods in computer vision also considers
partially overlapped span candidates as positive samples as
long as the intersection over union (IoU) is larger than a
certain threshold value [90].

Continuing the running example, in Fig. 5.1.1 we utilize a
upper triangular matrix with blue color to represent valid
span candidates and the positive span is labeled with corre-
sponding classes.

5.1.5 Span Locating

Another transformation approach is called span locating.
The goal of this transformation is to consider an input sen-
tence and relevant classes as a context-query pair and then
find the corresponding span boundaries within the original
input sentence [51]. The pipeline of this transformation is
similar to machine reading comprehension (MRC), which is
used to find answers in the context to the corresponding
questions [82,83]. Unlike in the span classification transfor-
mation where span candidates are generated, selected and
labeled, in span locating the decision making process hap-
pens in reverse order: first the class label is determined and
then the proper span holding that label is found.

Given a class label there are two typical ways to identify
the span(s). First, given a input sentence with ¢ tokens, one
way is to employ two ¢-class classifiers to predict the span
boundaries (i.e. the start and end tokens) [23]. The sec-
ond way is to employ two binary classifiers, one to predict
whether each token is a starting token or not, and the other
to determine whether each token is the end token or not,
with the obvious restriction that the beginning token must
precede the end token [51]. The span locating transforma-
tion illustrated in the example shows that first the PER and
LOC classes are identified either via a input or another model.
Then the transformation seeks to identify the boundary to-



Table 3: Trade-offs of Transformation Approaches

Complexity Class Distr.

Features Special Cases

Transformation # of inst. +/-

Token Span Span-Class Nested Discontinuous

Sequential Labeling O(1) 4/4
Token Prototype O(1) 4/4
Token-pair Classification O(1) 4/60
Span Classification O(1) 3/27
Span Locating  O(K) 6/0
Span Generation o(0) 6/8

N N RN
SNENEN

SNENEN

TASK: NER + Span Locating

INPUT: PER, LOC
INDEX: 0 1 2 3
INPUT: Apple CEO Tim Cook

™ T U
TRANS: Start/End Start End

INDEX: 4 5 6 7
INPUT: sold his Texas  house

(0
TRANS: Start/End
OUTPUT: [(0,0, ORG), (2,3, PER), (6,6, LOC)|

kens that begin and end the span that represents the class
labels within the sentence.

5.1.6 Span Generation

Text generation models have become popular especially with
the rise in LLMs. These generation models provide an-
other possibility in span-oriented transformations. The core
idea of span generation is to transform the original to-
ken sequence into an expanded token sequence with span-
tokens [46,79], similar to machine translation and other nat-
ural language generation tasks. In order to represent span
labels in the token sequence, span generation typically in-
serts distinct characteristics to indicate span labels including
both span positions and span classes [12, 26, 58].

Task: NER + Span Generation
INDEX: 0 1 2 3
INPUT: Apple CEO Tim Cook

INDEX: 4 5 6 7
INPUT: sold his Texas house

TRANS: ORG-L Apple 0RG-R CEO
PER-L Tim Cook PER-R sold
his LOC-L Texas LOC-R house

OUTPUT: [(0,0, ORG), (2,3, PER), (6,6, LOC)|

Continuing the running example illustrated above, span gen-
eration might transform the input token sequence into a
token sequence having spans represented by special span to-
kens like [PER-L] indicating the start of a person span or
LOC-R indicating the end of a location. Span generation
models are commonly designed as an autoregressive token
generation task [12,26,58]. They take a token sequence and
a generated token as input, and predict the subsequent to-
ken. These predictions essentially represent classifications
from a predefined dictionary. During inference, the genera-
tion process continues iteratively until all the desired spans
are generated.

The span generation approach is widely utilized in many
information extraction tasks. For example, GENRE em-
ploys an auto-regressive model to transform the entity dis-
ambiguation and entity linking tasks into a joint text/entity-
name generation task [12]. For the entity disambiguation
task, target entities are selected with a conditional gener-
ation method based on the provided token sequence. As
for the entity linking task, the span indices and their la-
bels are together transformed into an augmentation of the
original sentence. Specific to the NER task, the BartNER
model transforms the token sequence into uniform index
pointers [111]. And more recently, Universal Information
Extraction (UIE) architectures have also been developed to
transform different information extraction tasks (e.g. NER,
EL, ED) into the same format through generative language
modeling [26,58]. UIE systems can extract shared features
and joint correlations from training labels of different in-
formation extraction tasks. Furthermore, different struc-
tural signals across different information extraction tasks
can be encoded into similar text allowing efficient and effec-
tive knowledge transfer from pre-trained models [5,12].

5.2 Transformations Trade Offs

As we alluded to in the previous section, different trans-
formations have distinct trade-offs. Following Tab. 3, we
present these considerations along four dimensions: (1) com-
putational complexity, (2) the number of positive and nega-
tive class labels, (3) the features considered, and (4) appli-
cability to nested and discontinuous spans. It is important
to note that our discussion focuses on the general setup of
these transformations without considering any specific de-
sign modifications. Although some models and methods
may have specific designs tailored to address certain spe-
cial cases, it is not our intention to delve into specific design
strategies in the following discussion.

5.2.1 Complexity

Given an input document with ¢ tokens and K different tar-
get span classes, different transformation approaches have
different computational complexities. The main difference
in complexity is the number of actual instances (i.e. # of
instances in Tab. 3). This count directly corresponds to
the number of times the feed-forward process needs to be
executed in order to generate an inference output. Most
transformations require a single input, namely, the token
sequence, and makes several span predictions. The span lo-
cating transformation needs to consider each provided span
class as an individual instance and is therefore in O(K).
Like machine translation, the span generation transforma-
tion considers each token in the input sequence as an indi-
vidual instance yielding O(¢).



5.2.2 Positive and Negative Span Distributions

Different transformation approaches produce a different
number of targets, i.e. positive and negative spans, and
therefore the choice of transformation has a significant im-
pact on the label distribution and, as a result, the perfor-
mance metrics.

Again consider the running example illustrated above, which
includes two named entities. In the sequence labelling trans-
formation, four tokens including Apple, Tim, Cook, and
Texas are positive instances representing span tokens; the
other four tokens are negative instances representing non-
span tokens. In token-pair classification, there are £ = 64
token pairs in total; of which two are positive samples. In
span classification, with a window-length of five, there are a
total of 30 possible spans with length less or equal to 5 from
which only three represent positive spans. Finally, the span
generation transformation produces three positive spans us-
ing six special tokens to annotate positive spans. Therefore
the six special tokens are the positive instances and the orig-
inal eight tokens are considered negative tokens. Clearly,
different transformation approaches yield substantially dif-
ferent class distributions, which by definition has a large
impact on performance metrics.

Noisy or incomplete labels are also differently impacted by
the choice of transformation. Understanding these differ-
ences is important because many information extraction
datasets have noisy training labels of 5% or more [103,124]
even for the well-known CONLLO03 NER dataset [96]. In an
interesting empirical study on the missing labels for infor-
mation extraction tasks, Li et al. considered as a special
case where noise is only present in negative samples [52].
They show that, during training, ignoring positive examples
has small impact, but incorrectly labelling positive spans as
being negative samples has significant impact on the final
results. The same idea also applies for different transforma-
tions with different positive and negative span distributions.

5.2.3 Features

Different transformations use various models to produce
spans, resulting in different abilities to encode different types
of features. We focus on three main types of features: (1)
token embeddings, (2) span embeddings, and (3) the span-
class representation.

Token-wise transformations such as sequential labeling, to-
ken prototype, and token-pair classification decompose span
labels into token-wise classes, making token features easy to
encode but precluding the consideration of span features. In
span classification, the embeddings of span candidates can
be obtained and then span classes can be assigned to the
entire span. In contrast, span locating encodes the span
class along with the original sentence as input, and results
are obtained by locating the span boundaries using the span
indices, meaning that the span embedding cannot be con-
sidered. Likewise, span generation cannot use span embed-
dings, but instead represents span classes as a sequence of
tokens to generate.

5.2.4 Nested and Discontinuous Spans

Overlapping spans is an important complication for train-
ing, inferences, and evaluation. This occurs when a single
token is made to belong to two or more different spans. Dif-
ferent transformations handle these cases in different ways.

We categorize them into two distinct cases: nested and dis-
continuous.

Nested spans are situations where a token can belong to mul-
tiple spans simultaneously. Transformations which allow for
nested spans include token-pair classification, span classifi-
cation, and span locating. Token-pair considers nested cases
into different start-end token pairs; span classification con-
siders all the possible span candidates, which includes over-
lapping spans; and span locating has no restriction on where
the beginning and ending indices of different classes may be
placed. In contrast, sequential labeling and token proto-
type transformations decompose span labels into token-wise
labels; as a result, a token can not belong to two classes si-
multaneously. Likewise, span generation requires the injec-
tion of special tokens to indicate span classes, and therefore
can not provide nested spans either.

Discontinuous cases, on the other hand, involve the forma-
tion of spans using non-adjacent tokens. In these cases, not-
contiguous tokens in the text can be grouped together to
form a single span. Because the token-pair matrix provides
the flexibility to link non-contiguous tokens, it is the only
method that can effectively handle discontinuous cases.

5.3 Training Strategies

After a span transformation approach is chosen, the sys-
tems needs to be properly employed to be effective. In other
words, different training strategies have to be considered for
a working framework. From our perspective, we catego-
rize the various standard training strategies into four broad
classes: (5.3.1) Feature tuning, which selects and engineers
the most relevant features for a particular information ex-
traction task; (5.3.2) Model tuning, which refers to the
process of optimizing the parameters of a machine learning
model; (5.3.3) Prompt tuning, which is the relatively new
task of fine-tuning the prompts fed to LLMs to achieve more
accurate results; and (5.3.4) In-Context learning, which in-
volved training models in specific context information, for
example, on specific datasets or niche tasks.

5.3.1 Feature Tuning

One of the outputs of pre-trained (large) language models
are informative and well-trained embeddings. These embed-
dings almost always represent a span—sometimes as short
as a word and sometimes as long as a whole sentence or
paragraph—and are effective features that can be used for
information extraction tasks. Prior to the rise of LLMs,
most features used in information extraction tasks came
from linguistic cues such as part-of-speech (POS) tags [84],
word stems and lemmas [8], and syntactic parsers [75]; as
well as statistical learning approaches like word frequency
counts [2], word co-occurrence analysis [65], and seman-
tic analysis [42]. Although these methods have their own
strengths and weaknesses, they are generally less effective
than LLM-based embeddings in capturing the complex re-
lationships between words in a language [11,19, 46, 65, 79].
Feature turning, therefore, refers to the numerous strate-
gies that have been developed to learn ever-more creative
and interesting features for spans. Equipped with these pre-
trained features, spans can be clustered or classified or la-
beled to solve any number of information extraction tasks.



5.3.2 Model Tuning

Sometimes, the pre-trained features from an LLM do not
align well with the task that is being asked of the system.
This misalignment will degrade the system’s performance.
In these cases it is common for LLMs to undergo a fine-
tuning process, which adapts the pre-trained model param-
eters, including span features, to the specific task. Previous
studies have shown that fine-tuning the model outperforms
feature engineering with similar settings [19,46], but can be
prone to catastrophic forgetting [54] and other maladies; see
the survey by Li et al. [49] for details. One major problem
is that model tuning requires that the model be loaded into
memory and trained, which, for even medium-sized LLMs,
is a non-trivial task.

5.3.3  Prompt Tuning

The rise of ChatGPT and other proprietary LLMs has
spawned an entirely new kind of NLP task called prompt-
tuning. In this case, instead of using or training span em-
beddings, prompt-tuning is the task of devising clever ways
to query the LLM. The advantages of prompt tuning are
clear. Because there is no need to extract, tune, or train
any model or features, it is relatively easy to use the sys-
tem. The task instead becomes finding the best prompts to
feed to the LLM so that it returns the answers you seek. An-
other often overlooked advantage of prompt tuning is that
by simply querying the system, it does not change. As a
result any prompts or other rules that are learned can be
maintained.

TASK: NER
INPUT: Apple CEO Tim Cook sold his Texas
house.

Prompt Apple CEO Tim Cook sold his Texas
Input: house. Tim Cook is a [MASK]

Prompt [MASK]| — technology executive
Output:

OUTPUT: [(2,3, PER)]

There are two types of prompt tuning: hard prompt tuning
and soft prompt tuning. In hard prompt tuning, a hand-
crafted prompt is used to glean results from the system.
Conversely, in soft prompt tuning, the prompt itself can
be trained. This means that an additional NLP model is
trained to predict an adaptable prompt based on some in-
put and labels. During the inference process, the prompt
model initially generates a prompt, which is then concate-
nated with a test sample and fed into the LLM to obtain
the final prediction; i.e. soft prompt tuning is a model gen-
erating input to feed to another model.

5.3.4 In-context Learning

Finally, In-context learning uses language models directly
without any extra training process. This is accomplished
by also injecting a few training examples along with corre-
sponding labels into the prompts. The idea is that language
models are able to see the mapping function between exam-
ple input data and their corresponding labels, and then they
can subsequently infer that same correspondence on unseen
input data for label prediction.

An example of in-context learning on the NER task might
resemble something like this:

TASK: NER
INPUT: Apple CEO Tim Cook sold his Texas house.

Prompt Satya Nadella says that Microsoft products
Input: will soon connect to OpenAl.
Satya Nadella is a PER
Apple CEO Tim Cook sold his Texas house.
Tim Cook is a [MASK]
Prompt [MASK] is a PER
Output:

OUTPUT: [(2,3, PER)]

With in-context learning a system can achieve robust ca-
pabilities with little cost. Another instance of this kind of
learning is the chain-of-source approach, wherein a question
and its corresponding answer are broken down into a series
of sub-problems [54]. By addressing these sub-questions in
a sequential manner, the system is able to arrive at more-
comprehensive and nuanced solutions.

6. DISCUSSION

Over the past millennia, text has been made by humans
for humans. The recent and broad digitization of human-
generated text has served to propel Al systems and tasks like
IE. When humans are tasked with performing information
extraction, they do so—with relative ease—Dby first under-
standing the concepts and definitions of the labels in their
context, even on unseen classes or in unknown languages. In
contrast, we often find that Al systems in few-shot and zero-
shot scenarios still perform much worse than humans [21,80].
This gap in performance is due to the Al system’s inability
to reason about the relationships between the context of the
input and the context of the class label. Ongoing work in
this area aims to properly encode these contexts. For exam-
ple, previous work in encoding entity descriptions as search
query targets has shown some ability to retrieve relevant
entity candidates [55,105]. However, these relationships are
nuanced; this research gap has not been fully explored, and
a wide gap remains.

6.1 Challenges of Language Models in Infor-
mation Extraction

While LLMs such as GPT-4 and its successors have demon-
strated impressive performance on various natural language
understanding tasks, they still face significant challenges in
the domain of information extraction. One primary chal-
lenge lies in their lack of explicit understanding of span re-
lationships, as discussed in earlier sections. LLMs excel in
general language generation and can provide surprisingly co-
herent and contextually relevant outputs, but they struggle
to extract and organize specific spans of text that correspond
to labeled entities or relationships. The high variance in in-
put phrasing, ambiguous contexts, and lack of consistent
structuring of target outputs complicates the task further.

Moreover, although LLMs have been fine-tuned on a vari-
ety of tasks, the models’ behavior in few-shot or zero-shot
scenarios remains below human performance. These mod-
els often exhibit difficulties in identifying the correct spans
for unseen classes or when confronted with ambiguous or
contradictory inputs. Their limited ability to apply prior



knowledge in a way that maps seamlessly to class-specific
outputs is a key barrier.

Additionally, LLMs tend to “hallucinate” information, pro-
viding outputs that sound plausible but are factually in-
correct or inconsistent with the context. While recent ad-
vancements in prompt engineering and in-context learning
offer some solutions, these techniques are not always robust
across domains. For example, a model may perform well on
certain tasks but falter when transferring to another context
without careful retraining or adaptation. This ongoing in-
consistency in performance is a significant hurdle in making
LLMs reliable for tasks that require structured information
extraction.

6.2 Future Work

Looking ahead, there are several promising directions for
advancing both information extraction tasks and the inte-
gration of language models with these tasks.

6.2.0.1 Improved Span Representations.

A major avenue for future work involves developing more
sophisticated methods for span representation. While much
progress has been made in learning to extract spans via at-
tention mechanisms, there is still a need to refine how these
spans are represented and related to their associated labels.
More nuanced encoding methods that can capture the dual-
ity of surface forms and meaning will be essential for address-
ing tasks in few-shot and zero-shot settings. In particular, a
more explicit handling of nested or overlapping spans could
open up new avenues for tasks like coreference resolution
and event argument extraction.

6.2.0.2 Contextual and Transfer Learning.

The future of information extraction lies in leveraging the
vast amounts of contextual data that LLMs have access to.
Research should focus on enhancing transfer learning ca-
pabilities, specifically focusing on how pretrained language
models can be adapted to more specialized IE tasks through
minimal labeled data. This includes advancing methods like
in-context learning, prompt-based techniques, and few-shot
learning paradigms. An exciting direction would be integrat-
ing task-specific knowledge into pre-trained LMs to enable
more efficient extraction and minimize the need for retrain-
ing on every new domain.

6.2.0.3 Span-Oriented Models for Cross-Task Gener-
alization.

As discussed throughout the paper, viewing IE tasks as
span-extraction problems allows for a unified approach to
these tasks. Future work could involve building models that
are not only generalizable across related tasks but also ca-
pable of handling multiple forms of information extraction
simultaneously. For example, a span-oriented model could
be designed to extract both named entities and relations
in a single pass, drastically reducing the complexity of cur-
rent systems that require separate pipelines for each task.
This could also facilitate more holistic systems for multi-task
learning.

6.2.0.4 Integrated Systems for Fact Verification and
Evidence Retrieval.

Another promising area for future work lies in integrating
information extraction with downstream tasks like fact ver-
ification. Given the growing reliance on LLMs in gener-
ating information, it is crucial to ensure that these mod-
els are grounded in reliable, evidence-based facts. This in-
volves developing systems where IE tasks are seamlessly in-
tegrated with external fact-checking mechanisms. In par-
ticular, span-extraction systems can play a pivotal role in
identifying verifiable facts that LLMs can then use to ground
their generative responses. Thus, future work should explore
tighter integration between these components to improve the
trustworthiness and reliability of LLM outputs.

6.2.0.5 Evaluation and Benchmarking Frameworks.

As the information extraction field continues to evolve, so
too must our evaluation strategies. Currently, benchmarks
for IE tasks often differ widely across tasks, making it diffi-
cult to draw meaningful comparisons between systems. Fu-
ture work should aim to develop unified evaluation protocols
that are applicable across a wide range of IE tasks. Metrics
like span-level precision, recall, and F1 score should become
the standard, allowing researchers to measure performance
more consistently. Furthermore, benchmarks should evolve
to account for the nuanced challenges posed by emerging
techniques like generative IE.

6.2.0.6  Ethical Considerations in Information Ex-
traction.

Finally, as with all Al systems, ethical considerations will
play a pivotal role in shaping the future of information ex-
traction. The potential for biases in training data and model
predictions, particularly when models are deployed in sen-
sitive or high-stakes applications, requires careful attention.
Future work must explore methods for ensuring fairness,
transparency, and accountability in IE systems. Moreover,
we must be vigilant in preventing misuse, such as the extrac-
tion of private information or the reinforcement of harmful
stereotypes. Developing ethical guidelines and establishing
frameworks for responsible deployment will be crucial for
the widespread adoption of these systems.

In conclusion, information extraction remains a challeng-
ing and dynamic field, but the advancements discussed here
signal a promising future. The integration of language mod-
els with structured IE tasks offers a new paradigm for cre-
ating systems that are not only more powerful but also
more aligned with human reasoning and understanding.
Through continued research and collaboration across dis-
ciplines, we can bridge the gap between human-level under-
standing and Al’s ability to perform complex information
extraction tasks.
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