Advancing Table Understanding of Large Language Models
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ABSTRACT

Large Language Models (LLMs) exhibit exceptional pro-
ficiency in comprehending human language. Despite their
significant success across a wide array of tasks, understanding
tabular data remains a challenging task. Especially, tabular
data lacks an intrinsic order of the different features (table
fields), whereas LLMs take only sequential inputs. Conse-
quently, an artificial order is imposed, the impact of which
on the performance of LLMs has not yet been thoroughly
investigated. Surprisingly, as discovered in this work, this
artificially induced order bias dramatically influences the
performance of LLMs on tasks related to tabular data. Mit-
igating the order bias presents a significant challenge. To
address this, we propose a simple and cost-effective method,
Re-Ordering Tabular feATures fOR LLM (ROTATOR-LLM),
to conduct test-time compute without fine-tuning the base
LLM. Aiming at optimizing the feature order of tabular data
and boosting LLMs’ capability to better understand the data
semantics, ROTATOR-LLM re-frames the ordering problem
as a feature trajectory generation task. A dynamic program-
ming based meta-controller is trained to auto-regressively
generate an individualized feature trajectory for each data
instance via accumulative value estimation of the serialized
feature input through the LLM'’s final performance metrics.
Model performance is maximized by iteratively selecting fea-
tures across different steps. Experimental results on multiple
datasets and LLMs show close to or over 20% performance
boosts via features reordered by ROTATOR-LLM against
the un-ordered counterpart. Meanwhile, it outperforms state-
of-the-Art tabular LLM methods with significant margin.

1. INTRODUCTION

Tabular data is prevalent in real-world scientific, medical,
biological, sociological, financial, and retail databases, neces-
sitating significant time and effort for humans to process and
analyze [8; 9]. Fortunately, advancements in large language
models (LLMs) have enabled rigorous exploration of their ap-
plication in various tasks related to tabular data modeling [39;
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11]. Recent breakthroughs have involved LLMs to handle
a wide range of tabular data tasks, such as TabLLM [10],
TableGPT [41], and TableLlama [43].

Although tabular data can be easily converted into text for-
mat, LLMs struggle to effectively analyze the converted data.
Since LLMs are primarily pre-trained on natural language,
they face challenges in extracting meaningful insights from
structured tabular data. To overcome this challenge, exist-
ing work primarily focuses on fine-tuning LLMs on tabular
dataset to inject the data prior knowledge to the models. For
example, TableLlama employs Longl.oRA to fine-tune the
Llama-2-7B LLM on the extensive Tablelnstruct datasets.
Similarly, TableGPT introduces a table encoder and chain-
of-command mechanism, utilizing a Phoenix-7B LLM for
inference. Despite these advancements, much of the current
research on tabular data analysis overlooks the critical role
of feature order in the prompt: due to the sequential nature
of transformer decoder based models, an artificial order is
inevitably created when feeding the features into the LLM
one by one regardless of the detailed prompting schemes.
Recent studies reveal that this induced ordering of features
significantly impacts LLM’s behavior [4; 34] For instance,
the LLM prediction on the same data instance can vary just
by changing the order of input features, as in Figure 1 (a).
Further details are discussed in Section 3.

This problem is mainly rooted in the order bias in the pre-
training data, where the collected data follows certain se-
quences preferred by humans. Such order preference is cap-
tured by the LLMs during the pre-training stage, which
enables LLMs to better learn the data semantics whose fea-
ture importance ranking aligns with the order bias [22; 15].
To tackle this, an intuitive solution is to remove the order
bias by fine-tuning the LLMs on unbiased data. However,
fine-tuning LLMs is not only time- and resource-consuming
due to the billions of updated parameters, but also labor-
intensive, requiring collecting high-quality data [36; 40]. A
more practical approach is to preprocess the data to align
with the LLMs’ inherent order bias, enabling them to better
grasp the data’s semantics. This alignment offers greater
potential for real-world applications due to its feasibility,
scalability, and extensibility across diverse datasets.

In this work, we introduce Re-Ordering Tabular feATures
fOR LLM (ROTATOR-LLM), a simple and cost-effective



method to help LLMs better comprehend data semantics
via test-time compute in the input level [24]. Specifically,
ROTATOR-LLM converts the feature ordering problem into
a task of generating feature trajectories, where each tra-
jectory represents a sequence of features in a specific or-
der. To avoid the high resource consumption of fine-tuing
the LLM and the corresponding expensive human labeling,
ROTATOR-LLM trains a light-weight neural network as a
meta-controller to auto-regressively generates the optimized
feature trajectory for each data instance, guided by a value
function designed to supervise its training process. It is
challenging to define the value function for a specific feature
order such that this value aligns with the corresponding
LLMs’ performance. We are motivated by dynamic pro-
gramming to overcome this challenge. Specifically, the value
of a feature trajectory is defined as its potential maximal
value in the next state within the whole generation path.
At the last state, the value of an integral trajectory is de-
termined by the LLMs’ performance. This approach allows
us to estimate the value of any feature trajectory, which, in
turn, supervises the training of the meta-controller. To eval-
uate ROTATOR-LLM, we conduct experiments with three
LLMs across four tabular datasets. The results demonstrate
that LLMs perform significantly better on data reordered by
ROTATOR-LLM compared to random or default orders, un-
derscoring the effectiveness of the reordering process. More-
over, ROTATOR-~LLM outperforms existing foundational
tabular LLMs, further highlighting its potential in real-world
applications. In summary, our contributions in this work are
as follows:
e Order Bias of LLMs. We demonstrate that the order
of instance features in a prompt significantly influences
LLM predictions, identifying the presence of order bias.

e Alignment to Order Bias. We propose ROTATOR-
LLM, a cost-effective solution that requires no tuning of
LLM parameters. It aligns data instances to the inherent
order bias of LLMs by re-ordering its features.

e Evaluation. Experimental results on four datasets with
three popular LLMs demonstrate the superior perfor-
mance lift brought by ROTATOR-LLM, which improves
LLMs’ classification accuracy by 20% in average.

2. PRELIMINARIES

We introduce the notations and data format transition in
this section.

2.1 Notations

We consider aligning the dataset D = (x,y) |z € X,y € Y
to the order bias of LLMs f(e). Each instance x € X has
M features, @ = [z1,22, - ,24, - ,Zm], where j € J =
{1,2,---, M} is the feature index in the default order of a
particular tabular dataset. Let 7 = [r1, 72, , Ta;] denote a
specific ordering of the features of instance @, representing a
feature trajectory with M positions. For 1 <t < M, each
7 € {x1,x2, - ,xm} indicates a feature ranked at position
t; and Ty denotes a slice of the trajectory comprising

the first ¢ positions [r1,- -+ ,7¢], each containing a feature
best suited for the corresponding position. The case t =0
represents the initial state T(g.q) = [ ] where no features have

been ranked, while ¢ = M denotes the final state 7o.5s) that
all M positions are filled by properly ranked features. For

example, if there are in total 3 features, the full trajectory
T = [z2, 23, x1] represents the features are ordered as 2, 3,
and 1 at positions 0, 1, and 2, respectively. In Section 3,
we demonstrate the order bias of LLMs by showing that
the prediction results § = f(7) are significantly affected
by the order of input features 7. To address this issue,
we introduce ROTATOR-LLM in Section 4, which aligns a
dataset D to the order bias of LLMs. ROTATOR-LLM aims
to generate the optimal trajectory 7" for each instance x,
thereby maximizing the accuracy of the LLMs’ predictions.

2.2 Text-based serialization

Text-based Serialization refers to converting tabular data
into text data to fit the input modality of LLMs. Existing
work explores several methods of text-based serialization. For
example, Markdown table [18; 12], JSON-file format [23; 26],
and sentence serialization [38; 12]. To maximally leverage
the sequence-to-sequence capacity of LLMs, we consider the
sentence serialization to convert the data features into text
data. The advantage of sentence serialization is its alignment
with the natural language data where LLMs are pre-trained.
In this work, we use a template given in Appendix C to
convert tabular data into text data. For instance, we adopt
the sentence “the age of this person is 30; this person has
no house” to represent the tabular data {Age:30,House:No}.
Our method can be easily extended to fit Markdown table and
JSON-file formats of serialized data, but their performance
is out of the scope of this work.

3. ORDER BIAS OF LLMS ON TABULAR
DATA

In this section, we empirically analyze the order bias of LLMs
and present the experimental evidence of LLM’s behavior
change under the influence of order bias.

3.1 Why LLMs have Order Bias?

Order bias refers to the impact that the sequence of tabular
data features has on the predictions made by LLMs. While
from the perspective of how human beings understand the
tabular data, the order of features/fields is not meaningful
and should not affect the model output, each particular seri-
alization of these features/fields indeed results in a different
input sequence for an auto-regressive model and accordingly
a difference in the outcome. For LLMs, this difference affects
their attention maps. We show an example in Figure 1 (c)
to demonstrate the influence of different feature orders on
the last-layer attention maps. As each feature is represented
by a sentence, i.e. multiple tokens, each cell in Figure 1 (c)
corresponds to a matrix of attention values between tokens.
The notation ‘~ i, j, &’ indicates the attention matrix is com-
puted based on a mixture of information from the token
embeddings associated with features i,j and k. In this ex-
ample, the sequence of features 1, 2, 3, and 4 in the upper
sub-figure mixes a different set of tokens compared to the
feature sequence of 2, 3, 4, and 1 for the computation of last-
layer attention map. The variations in last-layer attention
maps lead to obvious differences in the prediction results.

3.2 Demonstrations of Order Bias

We demonstrate the presence of order bias in LLMs using real-
world tabular datasets. Specifically, we examine the variance
in LLMSs’ predictions caused by different permutations of data
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Figure 1: (a) An example of LLM order bias. (b) Order bias generally exist in different LLMs. (c¢) Comparison of the last-layer
attention map under different orders of input features. Since each feature is represented by a sentence, i.e. multiple tokens,
each cell corresponds to a matrix of attention values between tokens. The notation ‘~ i, j, k’ indicates the attention matrix is
computed based on a mixture of information from the token embeddings associated with features 4, j and k.

features. The probability of LLMs’ predictions is estimated

~ of of ~
by ]P)(y = 1) = # of Pfrmultations = #]M! 1’ and P(y = 0) =
1 —P(g = 1). The variance in predictions is quantified

by the entropy H(§) = —P(§ = 0)log, P(g = 0) — P(g =
1) log, P(§ 1). For instance, for data instance having
two features: age and house, if an LLM outputs g = 1
for {Age:30,House:No} and § = 0 for {House:No,Age:30},
then P(y = 1) = P(§ = 0) = 0.5, resulting in an entropy of
1. If the LLM’s predictions show no variance, then either
P(g=0)=1or P(g =1) =1, yielding a minimal entropy of
0. Conversely, if the predictions are randomly distributed,
P(g =0) = 0.5 and P(§ = 1) = 0.5, leading to a maximum
entropy of 1. Higher entropy indicates greater variance in
prediction results, signifying a stronger presence of order bias
in the LLMs.

The experiments are conducted on the Bank, Income, Ger-
man Credit, and Diabete datasets [1], using the L1ama-2-8B-
instruct [28] and Mistral-7B-Instruct [13] LLMs as pre-
dictors. The entropy of predictions resulting from feature
reordering is shown in Figure 1 (b). Notably, all LLMs ap-
plied to the tabular datasets exhibit an entropy exceeding 0.7,
approaching the maximum value of 1. This clearly indicates
the presence of order bias.

4. Re-Ordering Tabular feATures fOR LLM
(ROTATOR-LLM)

In this section, we introduce Re-Ordering Tabular feATures

fOR LLM (ROTATOR-LLM) in details. Specifically, ROTATOR-

LLM adopts a meta-controller to generate the reordered
feature trajectory; then converts the features to text data
following the template in Appendix C; finally inputs the data
features in text format to LLMs for inference. The overall
objective is to maximize the accuracy of the LLM predictions
for tabular data classification tasks. We discuss the details
as follows.

4.1 Feature Trajectory Generation

ROTATOR-LLM maintains a meta-controller g(e | 0) : T —
R to estimate the ranking value of each feature at each
location. Specifically, for 0 < ¢t < M, with a slice of trajectory
Tlo0.] as input, the value of g([T(0.¢), ;] | #) € R represents
the value of trajectory [T[o.],2;], which also indicates the
ranking value of feature j at position ¢, given the feature
ordering of first ¢ positions T(.;). We consider a higher value
g(T | 0) as indicative of better ranking results for feature

orders that align more closely with the preferences of the
LLMs. Therefore, ROTATOR-LLM can recursively generate
a trajectory of M data features by

(1)

_ il | 0).
T argrjn:}(g([‘r[o.t 11, %5] | 0)

We define a value function v(7) to compute the classification
loss of LLMs’ prediction over input data crafted with the
feature trajectory 7. We believe a feature ordering that is
more aligned with LLMs’ pre-training can lead to better
prediction result. Therefore, v(7) is defined as follows:

—Ls(f(7),v) 2)

where Ly denotes the cross-entropy; f(7) is the prediction
output of the base LLM; trajectory value function v(7) is
opposite to the cross-entropy loss such that the optimal
trajectory 7 can minimize the classification error while
maximizing the corresponding value function.

Note that Equation (2) only defines the value of a complete
trajectory v(7), it is important to extend its definition to a
slice of trajectory v(T[p.y), for the purpose of training the
controller g(e | ). However, the value function is strictly
defined on the full trajectory T (not on its slices) and the
final LLM output after feeding 7 into it, so that v(7o.4)
cannot be directly obtained via Equation (2). To overcome
this challenge, we employ dynamic programming to define
v(T[0:)), where 0 < ¢t < M. Specifically, for a slice of
trajectory Tip.y, its value function v(7[g.) is defined as the
maximal value of v(7) such that ¥4 = T 0.4, given by

v(T)

v(T[0:4))

_ ~ M—t
- maXT[tfle] v

®3)
(4)

where 0 < v < 1 denotes a discounting factor. The dis-
counting factor regulates how features ranked at different
positions cumulatively contribute to the final cross entropy
and full trajectory value. This is inspired by the observation
in previous studies that tokens closer to the end contribute
relatively more to the output of LLMs [14].

According to Equation (4), we have an iterative property of
the value function given by v(7 o)) = Yv(T[0:¢41]) running
backwards from positions t = M to t = 0 with the last state
value given by v(7) = —Ls(f(7),y) at t = M. The parame-
ters of g(T(o. | ¥) are updated to minimize the mean-square

V([T0i—11» Tre—1:M]]),

= maXjeg ’YU([T[O:t—u: 1’1‘])7



Table 1: Balance accuracy on the Bank, Income, Germen Credit, and Diabetes datasets.

Datasets Order Bank Income Germen Credit Diabetes Average
Default 0.522 0.516 0.521 0.312 0.468
Llama-3-8B  Random 0.510 0.520 0.535 0.385 0.488
ROTATOR-LLM 0.791 0.752 0.665 0.738 0.737
Default 0.599 0.540 0.493 0.699 0.585
Mistral-7B Random 0.574 0.577 0.546 0.676 0.593
ROTATOR-LLM 0.782 0.801 0.701 0.722 0.752
Default 0.504 0.510 0.405 0.634 0.513
Phi-3-mini Random 0.481 0.521 0.440 0.655 0.524
ROTATOR-LLM 0.712 0.771 0.665 0.743 0.723

Table 2: F1 score of ROTATOR-LLM on the Bank, Income, Germen Credit, and Diabetes datasets.

Datasets Order Bank Income Germen Credit Diabetes Average
Default 0.466 0.674 0.600 0.191 0.483
Llama-3-8B  Random 0.555 0.676 0.605 0.353 0.547
ROTATOR-LLM 0.811 0.796 0.732 0.774 0.778
Default 0.428 0.678 0.145 0.691 0.486
Mistral-7B Random 0.456 0.692 0.365 0.695 0.552
ROTATOR-LLM 0.774 0.808 0.734 0.765 0.770
Default 0.245 0.664 0.182 0.505 0.399
Phi-3-mini ~ Random 0.439 0.660 0.512 0.632 0.561
ROTATOR-LLM 0.658 0.776 0.622 0.763 0.705

Algorithm 1 Re-Ordering Tabular feATures fOR LLM
(ROTATOR-LLM)
Input: Training dataset D and LLM f(e).
Output: Meta-controller g(e | 0).
1: for (z,y) ~ D do
2: Generate T by Eq. (1), where initial value 7.0 =] ].
3 Estimate the loss value of prediction L¢(f(7),y).
4 Estimate v(7o.)) for 1 <t < M based on Eq. (6).
5: Update the parameters of g(e | #) to minimize Eq. (5).
6: end for

error aligned with the value function v(7 o) as follows:

1M

0 =37 O [80T0a 10) = v(ri0:0)]", (5)

t=0

L

where v(Tg.4) can be estimated based on its iterative prop-
erty as follows:

if t < M,

ift =M. ©)

—Ls(f(7),v)

4.2 Algorithm of ROTATOR-LLM

Algorithm 1 shows one epoch of ROTATOR-LLM. Specifi-
cally, for each mini-batch of instances, ROTATOR-LLM first
generate an order of features following Equation (1) (line
2); then estimate the loss function of LLMs’ prediction,
where the input data of LLMs follows the generated fea-
ture order (line 3); then estimate the value functions based
on Equation (6) (line 4); finally updates the parameters
of meta-controller to minimize the loss function given in
Equation (5) (line 5).

max; g([To.41, 5] | 0
o(riom) = {7 s 8o, 231 | 0)

S. EXPERIMENTS

In this section, we conduct experiments to evaluate ROTATOR-
LLM, aiming to answer the following research questions:

RQ1: Does ROTATOR-LLM effectively align the data with
the LLMs for better performance? RQ2: Can the controller
be transferred between different LLMs? RQ3: How does
the reordering intrinsically impact the LLMs?

5.1 Experiment Setup

We specify the datasets, LLMs, baseline methods, metrics,
and implementation details.

Datasets. The evaluation of ROTATOR-LLM is based
on the Bank, Income, German Credit, and Diabetes datasets
from the areas of social media, finance and healthcare. The
datasets source from the UC Irvine machine learning reposi-
tory [1]. On each dataset, the data features are first reordered;
then converted into text data following the template in Ap-
pendix C; and finally being input to LLMs for classification.

LLMs. We evaluate ROTATOR-LLM using three model
families: Llama-3-8B [28], Mistral-7B [13], and Phi-3-mini-
4k [17]. These LLMs are employed due to their leader-
ship among open-sourced LLMs according to existing leader-
boards [5]. We download their instruct-tuned version from
the Huggingface [33].

Baseine Methods. We consider four baseline meth-
ods compared with ROTATOR-LLM. Default order. The
features of each data instance follow the default order pri-
vided by the datasets. Random order. The features of
each data instance are randomly ordered. TableLlama. A
Llama-based foundational tabular LLM fine-tuned on large-
scale tabular datasets [43]. TableLLM. A GPT-2-based
foundational tabular LLM fine-tuned on large-scale tabular
datasets [41].

Evaluation Metrics. Due to the imbalance of positive
and negative examples in the datasets, the regular accuracy



Table 3: Transferability of ROTATOR-LLM. Meta controller is trained with a source LLM and tested on a different target LLM.

Metric | Configuration Bank Income Germen Credit Diabetes Average
Default-Llama 0.522 0.516 0.521 0.312 0.468
Random-Llama 0.510 0.520 0.535 0.385 0.488
Balance accurac Mistral—Llama  0.544  0.622 0.627 0.670 0.616
Y [Default-Mistral 0.599 0.540 0.500 0.699 0.585
Random-Mistral  0.574 0.577 0.546 0.676 0.593
Llama— Mistral 0.581 0.756 0.581 0.756 0.669
Default-Llama 0.466 0.674 0.600 0.191 0.483
Random-Llama 0.555 0.676 0.605 0.353 0.547
F1 score Mistral—Llama  0.598 0.714 0.675 0.722 0.677
Default-Mistral 0.428 0.678 0.145 0.691 0.486
Random-Mistral  0.456 0.692 0.365 0.695 0.552
Llama—Mistral 0.504 0.743 0.414 0.690 0.588
1.0 1.0 1.2 1.2
N ROTATOR-Mistral-7B EE ROTATOR-Mistral-7B I Default I Default
0.9 = TableLlama 0.9 = TableLlama 1.0/ ==m ROTATOR 1.0 == ROTATOR
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(a)
Figure 2: (a)-(b) Comparison of ROTATOR-LLM with state-of-the-art foundational Table LLMs. (c) Balanced accuracy and
(d) F1 score of shrinking the duplicated features in the prompts.

(b)

metric is not sufficient to truly reflect the classification per-
formance. Therefore, we evaluate the balance accuracy (1)
and F1 score (1) of LLM’s classification on the datasets.
To estimate the balance accuracy, the minority class is first
duplicated to align with the size of the majority class. Then
the accuracy is calculated.

Implementation Details. The meta-controller takes
a three-layer MLP that is trained using Adam optimizer
with learning rate 10™3 for 200 epochs. An early stop is
implemented on the validation datasets. The training and
evaluation processes follow the same template of text serial-
ization given in Appendix C. The detailed hyper-parameter
setting of ROTATOR-LLM is given in Apendix B.

5.2 Alignment Performance (RQ1)

We evaluate the performance of ROTATOR-LLM by exam-
ining the classification of LLMs after the alignment. For fair
comparison, ROTATOR-LLM and baseline methods adopt
the same prompt given in Appendix C for text serialization.
The balanced accuracy and F1 score are shown in Tables 1
and 2, respectively. The comparison with baseline founda-
tional tabular LLMs is illustrated in Figure 2 (a) and (b).
Overall, we have the following observations:

e Effectiveness of Alignment. LLMs show much bet-
ter performance based on ROTATOR-LLM than the
data with default and random feature orders. This in-
dicates that ROTATOR-LLM effectively align the data
feature to LLMs, and thereafter enhances LLMs’ under-
standing on the tabular data by optimally reordering
the features.

e Competitive Performance. ROTATOR-LLM out-
performs foundational tabular LLMs, e.g., TableLLM

() (d)

and TableLlama. Compare to these costly fine-tuning
methods, ROTATOR-LLM not only saves resources
effectively but also shows performance superiority.

e Consistent Performance. ROTATOR-LLM is con-
sistently competitive over baseline methods across vari-
ous LLMs and tabular datasets, indicating its stability
and generalizability for real-world applications.

5.3 Transfer-ability of Controller (RQ2)

In this section, we evaluate the transferability of the learned
controller. The meta-controller is trained based on a source
LLM and tested on a target LLM, marked as “source LLM —
target LLM”. We take Llama-2-8B, Mistral-7B for the source
LLMs, and Mistral-7B, Llama-2-8B for the target LLMs,
respectively. The results of the controller transfer are shown
in Table 3. It is observed that transferring the controller
from one LLM to another achieves better performance than
inputting the data instance following the default or random
order. The results validate the transferability of our learned
controller, which meets our expectations as different LLMs
could have similar order bias due to the fact that they all
focus on learning the large human-generated content in pre-
training.

5.4 Case Studies (RQ3)

In this section, we show the data features reordered by
ROTATOR-LLM. The data features in natural language sen-
tences are shown in Figure 3, where the place holder <Data
Features> takes the “Data features”, “Reordered features”,
and “Reorder and Deduplication” below. We further inves-
tigate the affect of deduplication to LLLMs’ performance in
Figure 2 (c) and (d), where the deduplication removes the



Prompts: You are a data analyst. Given information of a person, you should predict whether this person will subscribe to a term
deposit. <Data Features> Will this person subscribe to a term deposit?\n\n[Your Response Format|: “Yes / No”

Label: Yes

Default features: This person’s age is 33.0. The type of this person’s job is technician. This person’s marital status is single. This
person’s education is secondary. This person has no credit in default. This person’s average yearly balance in euros is 2979.0. This
person has no house. This person has no personal loan. This person’s contact communication type is cellular. This person’s last contact
day of the month is 5.0. This person’s last contact month of year is aug. This person’s last contact duration is 326.0 seconds. This person
has 2.0 contacts performed during this campaign. 437.0 days have passed since this person was last contacted from a previous campaign.
This person has 1.0 contacts performed before this campaign. The outcome of this person’s previous marketing campaign is failure.

LLM prediction: No

Reordered features: This person’s last contact month of year is aug. This person’s last contact month of year is aug. This person’s
last contact month of year is aug. 437.0 days have passed since this person was last contacted from a previous campaign. This person
has 1.0 contacts performed before this campaign. The type of this person’s job is technician. The type of this person’s job is technician.
This person has no personal loan. This person’s average yearly balance in euros is 2979.0. This person’s last contact day of the month is
5. This person has no personal loan. This person’s age is 33. This person has no house. This person has no house. The outcome of this
person’s previous marketing campaign is failure. This person has no personal loan.

LLM prediction: Yes

Reorder and Deduplication: This person’s last contact month of year is aug. 437.0 days have passed since this person was last
contacted from a previous campaign. This person has 1.0 contacts performed before this campaign. The type of this person’s job is
technician. This person has no personal loan. This person’s average yearly balance in euros is 2979.0. This person’s last contact day of
the month is 5.0. This person has no personal loan. This person’s age is 33.0. This person has no house. The outcome of this person’s
previous marketing campaign is failure. This person has no personal loan.

LLM prediction: Yes

Figure 3: Examples of LLM’s predictions based on default ordered, reordered, and reordered and deduplicated features.

duplicated features from the reordered data. Overall, we
have the following insights:

TableLlama adopts LongLLoRA to fine-tune the Llama-2-7B
LLM on the extensive TableInstruct datasets [43]. TableGPT
introduces a table encoder and chain-of-command mecha-
nism and performs instruction tunings for Phoenix-7B LLMs
on collections of tabular datasets [16]. Different from exist-
ing work, TabLLM considers few-shot examples for prompts
during the fine-tuning, and updates the Bigscience/T0-3B
LLMs on single domain tabular datasets [44].

e Significance of Feature Order. A good feature order
benefits LLMs more than a high number of features. The
data instance has 16 features, and only 10 features left
after reordering. LLMs show more accurate predictions
based on reordered data features.

¢ Robust Feature Order. The features may be duplicated
after the reordering because the features are reordered
without replacement. As in Figure 2 (¢) and (d), LLMs
maintain the performance at high-levels after removing
the redundant features. This indicates the feature order
is robust to the deduplication of redundant features.

In-context Learning. Existing work has demonstrated
that LLMs are few-shot learners of tabular data [3; 21].
Leveraging few-shot examples in the prompts, LLMs can
better understand the data semantics through in-context
learning. Other prompt engineering methods include chain-
of-thoughts [32], tree-of-thoughts [37], self-consistency [30],

and others [27].
6. RELATED WORK

We discuss related work on tabular data understanding in
this section. Existing work that leverages LLMs to process
tabular data is primarily viewed from three perspectives:
feature serialization, large-scale fine-tuning, and prompt en-
gineering. We give details as follows.

7. CONCLUSION

In this work, we demonstrate novelly discover and thoroughly
explore the order bias of LLMs on tabular data, where the ar-
rangement of data features can mislead LLM predictions. To
address this issue, we propose ROTATOR-LLM, an approach
designed to align tabular data with this order bias, enabling
LLMs to better comprehend the data semantics. Specifically,
ROTATOR-LLM employs a meta-controller to learn the op-
timal feature order. It estimates the value function for each
feature order using dynamic programming, which guides the
training of the meta-controller. Our experimental results on
four datasets across three LLMs show that ROTATOR-LLM
achieves superior performance compared to baseline methods
and state-of-the-art foundational tabular LLMs when applied

Feature Serialization.  Feature serialization is a sim-
ple way to let LLMs understand tabular data. Specifi-
cally, a straightforward way would be to directly input
a programming-language readable data structure, such as
Markdown format [18; 12], JSON-file format [23; 26], HTML
format [23], and Python dictionary [31]. Another way is to
convert the tables into natural language sentence using tem-
plates based on the column headers and cell values [38]. This
method can maximally leverage the sequence-to-sequence

capacity of LLMs to understand tabular data.

Large-scale Fine-tuning. Fine-tuning on tabular datasets
is a straightforward way to inject the data prior knowledge
to LLMs. There are several existing work of fine-tuning.

to reordered data. Additionally, ROTATOR-LLM exhibits
strong transferability across multiple LLMs, indicating its
adaptability to diverse tasks. Without requiring fine-tuning
of LLMs, ROTATOR-LLM proves to be a more cost-effective
solution than traditional debiasing methods, underscoring



its potential for real-world applications.
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Bank | Income German Credit Diabetes
SVM 0.775 *0.802 0.673 0.743
Random Forest 0.731 0.783 0.651 0.615
MLP 0.721 0.784 *0.697 *0.741
ROTATOR-LLM 0.791 0.805 0.701 0.743

Table 4: Comparison with non-LLM methods

Name ‘ Value
Layer Number 3
Hidden Dimension 512
Optimizer Adam
Learning Rate 0.001
Epoch 200
Mini-batch Size 128

Table 5: Hyper-parameter setting of ROTATOR-LLM.
Appendix

A. COMPARISON WITH NON-LLM
METHODS

We compare ROTATOR-LLM with SVM, Random Forest,
and MLP as baseline methods on the Bank, Income, German
Credit, and Diabietes datasets. The baseline methods are
implemented with default setting in the Scikit-learn package.
Experimental results of balance accuracy are given in Ta-
ble 4, where ROTATOR-LLM takes the best results from the
Llama-3-8B, Mistrial-7B, and Phi-3-mini. It is observed that
ROTATOR-LLM consistently outperforms baseline methods,
which demonstrate the advantages of our approach.

B. HYPER-PARAMETER SETTING OF
ROTATOR-LLM

The hyper-parameter setting of ROTATOR-LLM in Table 5.
The discounting factor for meta-controller training is given
in Table 6.

C. TEMPLATE OF TEXT-BASED SERIAL-
IZATION

We give the template of text-based serialization in this work.
The templates for the bank, Income, German Credit, and
Diabete datasets are given in Figures 6, 7, 8, and 9, respec-
tively.

D. DISCUSSION ON FEATUE DUPLICATION

We would like to answer this question in the following two
aspects:

Why the duplication exists?

The trained meta-controller generate the feature trajectory
in an auto-regressive manner. As illustrated in the following
figure, the generation process begins by selecting the first
feature, such as ‘loan’. Based on this choice, the controller
then generates the second feature, for example, ‘House’, and
continues sequentially.

‘ Bank Income German Credit Diabete
Llama-3-8B-Instruct | 0.75 0.8 0.8 0.8
Mistral-7B-Instruct 0.85 0.9 0.85 0.9
Phi-3-Mini-Instruct 0.9 0.8 0.8 0.8

Table 6: Discounting factor on meta-controller training.

1.2 1.2
EEm Default EEm Default

1.0{ === ROTATOR 1.0{ === ROTATOR
(@) m ROTATOR and Deduplication I ROTATOR and Deduplication
2 0.8 0.8
$06 0.6
©
© 0.4 0.4
m

0.2 0.2

0.0 0.0

Bank Income Credit-G Diabete Bank Income Credit-G Diabete

(a) (b)
Figure 4: (a) Balanced accuracy and (b) F1 score of shrinking
the duplicated features in the prompts.

However, at each step, the controller selects a feature with re-
placement. i.e., previously selected features remain available
for future selections. For example, after generating ‘loan’ as
the first feature, it won’t remove ‘loan’ from candidate set,
and maybe chosen again in subsequent steps. As shown in
the figure, ‘loan’ also appears as the third feature, resulting
in duplicate features at different position. This generation
process with replacement keeps the candidate feature set
static at each step, which significantly simplifies the training
process.

Does the duplication hurt prediction?

We would like to clarify that this redundancy does not nega-
tively impact performance. As shown in Figure 4, the LLMs
maintain their performance even after the redundant features
are removed. This indicates that it is the feature reorder-
ing rather than feature duplication that contributes to the
performance improvement. Meanwhile, this result also sug-
gests that LLMs are robust to the duplicated features, and
deduplication does not affect their performance.
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Figure 5: Meta-controller generates the feature trajectory following an auto-regressive manner.

table2text_template = {

"age": "This, person’syageyisy{}.",
"job": "Theytypeyof, this,person’s,jobyisy{}.",
"marital": "This_ person’s_marital,status is {}.",
"education": "Thisyperson’syeducationyisy{}.",
"default": {"no": "This, personghasyno,credit,in default.",
"yes": "Thisyperson has credit,in,default."},
"balance": "This person’s,average,yearly balance, ineuros,is,{}.",
"housing": {"no": "This_person has no house.",
"yes": "This,person owns houses."},
"loan": {"no": "This_personghas no,personalloan.",
"yes": "Thisyperson has personal loan."},
"contact": "This,person’s,contact communication, typeyis {}.",
"day": "This,person’s,lastcontactday,of the month is {}.",
"month": "This_,person’s,last,contact month of, year is {}.",
"duration": "This_person’s last contact,durationgis {} seconds.",
"campaign": "This_personjhas {} contactsperformed during, this campaign.",
"pdays": "{},days_ have passed;since this_person,waslast contacted from a, previous campaign.
"previous": "This_personghas,{}, contactsperformed before,this campaign.",
"poutcome": "Thejoutcomeof this person’s previous marketing, campaignyis {}.’",

"

>

Figure 6: Table to Text data template on the bank dataset.

table2text_template = {

"workclass": "The,class,of this person’s, jobyis {}.",
"marital_status": "This_person’s maritalystatus isg{}.",
"education": "This_person’syeducationyis {}.",

"occupation": "This_person’syjobyis {}.",

"relationship": "This_ person’s,relationship in family is {}.",
"sex": "This,person’sygenderis {}.",

"race": "This_person’syrace is {}.",

"native_country": "The,native, country of,this personyis {}.",
"age": "This, person’s age is {}.",

"fnlwgt": "The,finalanalysis_ weightof this person,is, {}.",
"education_num": "Theeducation,durationof this personyis, {}.",
"capital_gain": "The,capital,gain of,this person,is {}.",
"capital_loss": "The,capitalyloss of,this persony is, {}.",
"hours_per_week": "The,person_ works,{} hours,per week,in average.",

Figure 7: Table to Text data template on the Income dataset.
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table2text_template = {
"checking_status": "The,statusof this_ person’s,checking account is {}.",
"credit_history": "The,statusof this person’s historical creditsyisy{}.",
"purpose": "This,person’s,purpose toyapply for credits is {}.",
"savings_status": "The,status of this person’sysaving account is {}.",
"employment": "The,present employment of,this person is, {}.",
"personal_status": "The marital,statusyof this person,is {}.",
"other_parties": {"none": "This,person, doesynot have other debtors.",
"coyapplicant": "Thisypersonghas, co-applicants.",
"guarantor": "This,person has guarantors."} ,
"property_magnitude": "The,property magnitude, of this,person,is, {}.",
"other_payment_plans": {"none": "This persongdoes not have other installment plans.",
"stores": "This_personghas_ installmentyplans for,stores.",
"bank": "This person has;installment plans,for banks."},
"housing": "own": "This_person owns houses.",
"rent": "This_ personyrentsgajhouse.",
"for,free": "This personglives,in a, free house."},
"job": "The,typeyof,this,person’s,jobyis,{}.",
"own_telephone": "none": "This,personydoesynot have a, telephone.",
"yes": "This,person ownsya,telephone."},
"foreign_worker": {"yes": "This personyis a foreign,worker.",
"no": "Thisyperson,isynot,a, foreign worker."},
"duration": "Thejdurationgofthis personyis,{}ymonths.",
"credit_amount": "The amount of_ this person’s,credityis {}.",

"installment_commitment": "This person has_ a,installmentrate of {} of disposibleyincome.

"residence_since": "Thisyperson has beenja residence for {} years.",
"age": "This,person’syageyisy{}.",

"existing_credits": "This_persongalreadyghas {} credits.",
"num_dependents": "This_ personysupports, {}_ dependents.",

3

Figure 8: Table to Text data template on the Germen Credit dataset.
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table2text_template = {

"HighBP": {0: "This_personghasgagynormal bloodpressure.",
1: "This,person has a high blood, pressure."},
"HighChol": {0: "Thisgperson has_ normal, cholesterol.",
1: "This,person has high cholesterol."},
"CholCheck": {0: "This,person has no,cholesterol check,in, 5, ,years."
1: "This_person has,cholesterol checksin,5,years."},
"BMI": "This,person’s_ Body Mass Index is {}",
"Smoker": {0: "This_person;smoked less_than,100,cigarettes in, the entire life."
1: "Thisyperson,smokedyat least 100, ,cigarettes in the entire life."},
"Stroke": {0: "This_person does_ not havea,stroke."
1: "This,person has a_ stroke."},
"HeartDiseaseorAttack": {0: "This persongdoes_ not have coronary heart disease(CHD) or
myocardialginfarction.",
1: "This,personghasa,coronary heart disease,(CHD) or myocardial infarction."},
"PhysActivity": {0: "This_person,didynotyhave physicalactivitiesin the past30,days.",
1: "Thisyperson had physicaljactivities in,the_ past 30 ,days."},
"Fruits": {0: "This person,does not consume fruit every, day.",
1: "This,person,consumes fruit one or more times every, day."},
"Veggies": {0: "This,person, does not ,consume vegetables every day."
1: "Thisyperson,consumesvegetables one or more times every,day."},
"HvyAlcoholConsump": {0: "This,person,isynotya heavy drinker(adult men having more,than, 14
drinks per_week andadult women having_ more, than,7 ,drinks per week) ."
1: "Thisypersonyisyagheavydrinker(adult men having morethan, 14 ,drinks per,weekand
adult women having more than, 7 ,drinks per week)."},
"AnyHealthcare": {0: "This persongdoes not Have any kind of health care coverage,_ includingy
health,insurance,_ prepaidyplans such as HMO."
1: "Thisgperson hasyanygykind,of healthcare coverage, including healthinsurance,_ prepaidy
plans,suchgas HMO."},
"NoDocbcCost": {0: "This,person_ never missesyagdoctor becauseof cost,in the past 12 months.",
1: "This_person onceneeded to seeya doctor but couldynot because of costyingythe past 12,
months."},
"GenHlth": "This,person’s,general healthyscoreyis, {}, (1l represents the best, and 5, ,represents
theyworst)."
"MentHlth": "This_personjhad,stress, depression,_ or,problems withyemotionsin,{},days of they
past, 30 days."
"PhysH1lth": "This_personghad,a,physical illnessoryinjury,in,{},daysyof the past 30, ,days."
"DiffWalk": {0: "This persongdoesynot haveserious difficultyywalking or climbing,stairs.",
1: "This,person has serious, difficulty_ walking or,climbing stairs."},
"Sex": {0: "This_personyisya, female."
1: "Thisypersonyisyaymale."},
"Age": "This,person’syageyisy{}.",
"Education": {
1: "Th1supersonuneveruattendeduschooluoruonlyuklndergarten ",
2: "This_personghasygrades i, ,through 8, ,(Elementary) .
3: "Thisypersonghas,grades 9, through, 11, (Someuhighuschool) ",
4: "This personghas;grade 12 0r_ GED,(Highschool graduate)."
5: "This_personphas collegey 1 uyearutou3uyearsu(Someucollegeuorutechnlcaluschool)
6: "This personghas;college 4,years orymore(College graduate)."
},
Figure 9: Table to Text data template on the Diabete dataset (i).
"Income": {
1: "This_person’syincomeyisless ;than;10000,dollars."
2: "Thisyperson’syincomeis more than;10000,dollars but,lessythan,;15000,dollars.",
3: "Thisyperson’s,incomeyisymore than, ;15000 dollars but less than;,20000,dollars.",
4: "Thisyperson’s;incomeis more,than;;20000,dollars but;lessthan;,25000,dollars.",
5: "Thisyperson’s,incomeyisymore than, ;25000 dollars but, less than;,35000,dollars.",
6: "Thisyperson’s,incomeyisymore than; ;35000 dollars but less than;55000,dollars.",
7: "This_person’syincomeyisymoreythan; ;565000,dollars butyless than,,75000,dollars.",
8: "Thisyperson’s,incomeyisymore than,,75000 dollars."
3,

Figure 10: Table to Text data template on the Diabete dataset (ii).
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