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ABSTRACT 

Medicines are designed to cure, treat, or prevent diseases; 
however, there are also risks in taking any medicine - particularly 
short term or long term adverse drug reactions (ADRs) can cause 
serious harm to patients. Adverse drug events have been estimated 
to cause over 700,000 emergency department visits each year in 
the United States. Thus, for medication safety, ADR monitoring is 
required for each drug throughout its life cycle, including early 
stages of drug design, different phases of clinical trials, and post-
marketing surveillance. Pharmacovigilance (PhV) is the science 
that concerns with the detection, assessment, understanding and 
prevention of ADRs. In the pre-marketing stages of a drug, PhV 
primarily focuses on predicting potential ADRs using preclinical 
characteristics of the compounds (e.g., drug targets, chemical 
structure) or screening data (e.g., bioassay data). In the post-
marketing stage, PhV has traditionally involved in mining 
spontaneous reports submitted to national surveillance systems. 
The research focus is currently shifting toward the use of data 
generated from platforms outside the conventional framework 
such as electronic medical records (EMRs), biomedical literature, 
and patient-reported data in online health forums. The emerging 
trend of PhV is to link preclinical data from the experimental 
platform with human safety information observed in the post-
marketing phase. This article provides a general overview of the 
current computational methodologies applied for PhV at different 
stages of drug development and concludes with future directions 
and challenges. 
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1. INTRODUCTION 
Every year the US public spends billions of dollars on 
prescription drugs for the cure, treatment, or prevention of 
diseases. However, caution should be taken seriously when taking 
any medication because severe adverse drug reactions (ADRs) can 
lead to patient morbidity. ADRs are often referred to as “any 
unintended and undesirable effects of a drug beyond its 
anticipated therapeutic effects occurring during clinical use” [1]. 
According to the national surveillance study of emergency 
department visits for outpatient adverse drug events by Budnitz et 
al. [2], there were total 21,298 adverse drug events from January 1, 
2004 through December 31, 2005, yielding weighted annual 
estimates of 701,547 individuals or 2.4 individuals per 1000 
population treated in emergency departments. On the other hand, 

Lazarou et al. [3] estimated that each year 6-7% of hospitalized 
patients experience severe ADRs, which can lead to a potential of 
100,000 deaths, making it the fourth largest cause of death in US. 
Over the past 10 years, both reported ADRs and related deaths 
have increased ~2.6 times and we have seen a number of drugs 
withdrew from the US market after presenting unexpected severe 
ADRs [4, 5]. As a consequence, ADRs not only expose patients to 
higher risks of mortality and loss of quality of life, but also 
presents a huge burden on the national economy with an estimated 
$136 billion annual cost in the US, which is higher than 
cardiovascular or diabetic care [6, 7].  

ADRs are also a big concern for the pharmaceutical industry. 
Drug discovery is a long and expensive process. To bring a new 
drug to market, it can take at least 10 years and billions of dollars 
[8]. The main cause is the high failure rate of drug candidates in 
clinical trials. Unacceptable toxicities account for approximately 
30% of the failures [9]. Thus, early prediction of potential ADRs 
is essential to reduce risks of the costly failures. Additionally, 
even after a drug is approved to market, undiscovered severe 
ADRs may lead to withdrawals which can be detrimental 
financially for the manufacturers. Hence, it is critical to predict 
and monitor a drug’s ADRs throughout its life cycle, from 
preclinical screening phases to post-market surveillance.1 

Pharmacovigilance (PhV), also known as drug safety surveillance, 
is the science to enhance patient care and patient safety regarding 
the use of medicines by collecting, monitoring, assessing, and 
evaluating information from healthcare providers and patients. 
Broadly speaking, PhV can be divided into two stages: (1) pre-
marketing surveillance – information regarding ADRs is collected 
from pre-clinical screening and phases I to III clinical trials; and 
(2) post-marketing surveillance – data accumulated in the post-
approval stage and throughout a drug’s market life (Figure 1). 

Historically, PhV has relied on biological experiments or manual 
review of case reports; however, due to the vast quantities and 
complexity of data to be analyzed, computational methods that 
can accurately detect ADRs in a timely fashion have become a 
critical component in PhV. Large-scale compound databases 
containing structure, bioassay, and genomic information, such as 
NIH’s Molecular Libraries Initiative [10], as well as 
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comprehensive clinical data sets such as electronic medical record 
(EMR) databases, have become the enabling resources for 
computerized ADR detection methods.  

 

Figure 1. Pharmacovigilance at different stages of drug 
development 

In this paper, we will cover a broad spectrum of the current 
computational methodologies for PhV at both pre-marketing and 
post-marketing stages. The methodologies can be classified along 
different axes depending on the data sources applied with respect 
to each PhV stage. 

2. PRE-MARKETING SURVEILLANCE 
Much effort of PhV at the pre-marketing stage has been devoted 
to predict or assess potential ADRs early in the drug development 
pipeline. One of the fundamental methods is the application of 
preclinical in vitro Safety Pharmacology Profiling (SPP) by 
testing compounds with biochemical and cellular assays [11]. The 
hypothesis is that if a compound binds to a certain target, then its 
effect may translate into possible occurrence of an ADR in 
humans. However, experimental detection of ADRs remains 
challenging in terms of cost and efficiency [11]. There has been 
large amount of research activities devoted to developing 
computational approaches to predict potential ADRs using 
preclinical characteristics of the compounds or screening data. 
Most of the existing research can be categorized into protein 
target-based and chemical structure-based approaches. Others 
have also explored integrative approach. 

2.1 Protein Target-based Approach 
Drugs typically work by activating or inhibiting the function of a 
protein, which in turn results in therapeutic benefits to a patient. 
Thus, drug design essentially involves the design of small 
molecules that have complementary shapes and charges to the 
protein target with which they can bind and interact. ADRs are 

complex phenomenological observations of drugs that have been 
attributed to a variety of molecular scenarios such as unexpected 
interaction with the primary or off-targets, downstream pathway 
perturbations, and kinetics [12]. Many believe direct interaction 
with proteins to be one of the most important scenarios [11, 13].  

Fliri et al. [14] have shown that drugs with similar in vitro protein 
binding profiles tend to exhibit similar side-effects through 
hierarchical clustering of biological activity spectra and adverse 
event data of 1045 prescription drugs and 92 ligand-binding 
assays. This concept was further illustrated by Campillos et al. [15] 
where they extrapolated new drug targets by analyzing the 
likelihood of sharing protein targets for 277,885 pairs of 746 
marketed drugs using their side-effect similarities.  

Scheiber et al. [16] demonstrated the concept by comparing 
pathways affected by toxic compounds vs. those affected by non-
toxic compounds. Fukuzaki et al. [17] proposed a method to 
predict ADRs using sub-pathways that share correlated 
modifications of gene-expression profiles in the presence of the 
drug of interest. To find the “cooperative pathways” (pathways 
that function together), they developed an algorithm called 
CoopeRativE Pathway Enumerator (CREPE) to select 
combinations of sub-pathways that have common activation 
conditions. Their work depends on the availability of gene-
expression data observed under chemical perturbations by a drug.  

Xie et al. [18] developed a chemical systems biology approach to 
identify off-targets of a drug by docking the drug into binding 
pockets of proteins that are similar to its primary target. Then the 
drug-protein interaction pair with the best docking score was 
mapped to known biological pathways to identify potential off-
target binding networks of the drug. Unfortunately, scalability of 
the method is hindered by its requirement for protein 3D 
structures and known biological pathways.  

More recently, Brouwers et al. [19] quantified the contribution of 
protein interaction network neighborhood on the observed side-
effect similarity of drugs. Their fundamental idea is that side-
effect similarity of drugs could be attributed to their target 
proteins being close in a molecular network. They proposed a 
pathway neighborhood measure to assess the closest distance of 
drug pairs according to their target proteins in the human protein-
protein interaction network and found network neighborhoods to 
only account for 5.8% of the side-effect similarities compared to 
64% by shared drug targets. 

Pouliot et al. [20] applied logistic regression (LR) models to 
identify potential ADRs manifesting in 19 specific system organ 
classes (SOCs), as defined by the Medical Dictionary for 
Regulatory Activities [21], across 485 compounds in 508 
BioAssays in the PubChem database [22, 23]. The models were 
evaluated using leave-one-out-cross-validation. The mean AUCs 
(area under the receiver operating characteristic curve) ranged 
from 0.60 to 0.92 across different SOCs. 

2.2 Chemical Structure-based Approach 
The chemical structure-based approach attempts to link ADRs to 
their chemical structures. Most notably, as a proof-of-concept, 
Bender et al. [24] explored the chemical space of drugs and 
established its correlation for ADR prediction; however, the 
positive predictive value was quite low, under 0.5. Thereafter, 
Scheiber et al. [25] presented a global analysis that identified 
chemical substructures associated with ADRs, but the method was 
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not designed to predict ADRs for any specific drug molecule. 
Yamanishi et al. [26] proposed a method that predicted 
pharmacological effects from chemical structures and then used 
the effect similarity to infer drug-target interactions.  

Hammann et al. [27] employed decision tree to determine the 
chemical, physical, and structural properties of compounds that 
predispose them to causing ADRs. They focused on ADRs in the 
central nervous system (CNS), liver, and kidney as well as allergic 
ADRs for 507 compounds. The features used were numerical 
attributes computed from a compound’s structure, which included 
elemental analysis (e.g., atom count), charge analysis (e.g., 
polarizability, ion charge, topological polar surface area), and 
geometry (e.g., number of aromatic rings, rotable bonds), as well 
as partitioning coefficients and miscellaneous other characteristics 
(e.g., indicators of hydrogen bonding) [27].Their decision tree 
model was shown to produce predictive accuracies ranging from 
78.9 to 90.2% for allergic, renal, CNS, and hepatic ADRs. 

Pauwels et al. [28] developed a sparse canonical correlation 
analysis (SCCA) method to predict high-dimensional side-effect 
profiles of drug molecules based on the chemical structures. They 
demonstrated the usefulness of SCCA by predicting 1385 side-
effects in the SIDER database [29] from the chemical structures of 
888 approved drugs. They compared five methods: random 
assignment (Random) as a baseline, nearest neighbor (NN), 
support vector machine (SVM), ordinary canonical correlation 
analysis (OCCA), and SCCA for their abilities to predict known 
side-effect profiles through 5-fold cross validation. The best 
resulting AUC scores are 0.6088, 0.8917, 0.8930, 0.8651, and 
0.8932 for Random, NN, SVM, OCCA, SCCA, respectively. 
Their results suggest that the proposed method, SCCA, 
outperforms OCCA and its performance is comparable to SVM 
and NN. The main advantage of OCCA and SCCA over other 
algorithms is their biological interpretability to understand 
relationships between the chemical substructures and ADRs. 

2.3 Integrative Approach 
In the past year, approaches integrating various types of data 
relating to drugs for ADR prediction have gained many interests. 
Huang et al. [30] proposed a new computational framework to 
predict ADRs by integrating systems biology data that include 
protein targets, protein-protein interaction network, gene ontology 
(GO) annotation [31], and reported side effects. The SVM was 
applied as the predictive model to predict heart-related ADRs (i.e. 
cardio toxicity), which resulted in the highest AUC of 0.771. 
Soon after, Cami et al. [32] developed another ADR prediction 
framework by combining network structure formed by drug-ADR 
relationships (809 drugs and 852 ADRs) and information 
regarding specific drugs and adverse events. LR model was used 
as the predictive model and achieved an AUC of 0.87. 

Despite the success of using chemical and biological information 
of drugs for ADR prediction, few studies have investigated the 
use of phenotypic information (e.g., indication and other known 
ADRs). Existing resources, such as the SIDER database [29], 
contain comprehensive drug phenotypic information, which has 
been demonstrated to be useful for other drug related studies [15]. 
Recently, Liu et al. [33] investigated the use of phenotypic 
information, together with chemical and biological properties of 
drugs, to predict ADRs. Similar to the work by Pauwels et al. [28], 
they conducted a large-scale study to develop and validate the 
ADR prediction model on 1385 known ADRs for 832 FDA (US 

Food and Drug Administration) approved drugs in SIDER using 
five machine learning algorithms: LR, Naïve Bayes (NB), K-
Nearest Neighbor (KNN), Random Forest (RF), and SVM. 
Evaluation results showed that the integration of chemical, 
biological, and phenotypic properties outperforms the chemical 
structured-based method (from 0.9054 to 0.9524 with SVM) and 
has the potential to detect clinically important ADRs at both 
preclinical and post-market phases for drug surveillance. 

3. POST-MARKETING SURVEILLANCE 
Although a drug undergoes extensive screening (Figure 1) before 
its approval by the FDA, many ADRs may still be missed because 
the clinical trials are often small, short, and biased by excluding 
patients with comorbid diseases. Premarketing trials do not mirror 
actual clinical use situations for diverse (e.g. inpatient) 
populations, thus it is important to continue the surveillance post-
market. Several unique data sources are available for post-
marketing PhV. 

3.1 Spontaneous Reports 
Spontaneous reporting systems (SRSs) have served as the core 
data-collection system for post-marketing drug surveillance since 
1960. Some of the prominent SRSs are the Adverse Event 
Reporting System (AERS) maintained by the US FDA and the 
VigiBase managed by the World Health Organization (WHO). 
Although the SRSs may differ in structure and content, most of 
them rely on healthcare professionals and consumers to identify 
and report suspected cases of ADRs. Information collected 
usually include the drugs suspected to cause the ADR, 
concomitant drugs, indications, suspected events, and limited 
demographic information. Many post-marketing surveillance 
analyses are based on these reports voluntarily submitted to the 
national SRSs, which include disproportionality analysis and data 
mining algorithms. 

3.1.1 Disproportionality Analysis 
Disproportionality analysis (DPA) has been the driving force 
behind most PhV methods involving SRS data. The first time use 
of DPA for drug safety can be dated back to the early 1980s [34]. 
It is not our intention to exhaustively list and examine all relevant 
work. Rather, we aim to present the basic concepts and highlight 
some representative work here. DPA involves frequency analyses 
of 2x2 contingency tables to quantify the degree to which a drug 
and ADR co-occurs “disproportionally” compared with what 
would be expected if there were no association (Table 1) [35]. 

 ADR No ADR Total 

Drug a b n = a + b 

No Drug c d c + d 

Total m = a + c b + d t = a + b + c + d 

Table 1. Contingency table used in DPA 

Straightforward DPA methods involve the calculation of 
frequentist metrics. Some of the widely applied frequentist 
measures (Table 2) include the relative reporting ratio (RRR) [36], 
proportional reporting ratio (PRR) [37] adopted by the Medicines 
and Healthcare products regulatory Agency (MHRA) in UK and 
reporting odds ratio (ROR) [38] adopted by the Netherlands 
Pharmacovigilance Center. Hypothesis tests of independence (i.e., 
Chi-square test or Fisher’s exact test) are typically used along 
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with the above association estimates as extra precautionary 
measures. 

Association Measures Definition 

Relative Reporting Ratio (RRR) (t * a) / (m * n)  

Proportional Reporting Ratio (PRR) (a * (t – n)) / (c * n) 

Reporting Odds Ratio (ROR) (a * d) / (c * b) 

Table 2. Definitions of the frequentist measures of association 

In addition to the frequentist approaches, more complex 
algorithms based on Bayesian statistics were developed such as 
the gamma-Poisson shrinker (GPS) [39], the multi-item gamma-
Poisson shrinker (MGPS) [40, 41], and empirical Bayesian 
geometric means (EBGMs) [42, 43]. The GPS and MGPs 
methods are currently utilized by the FDA. Moreover, Bayesian 
Confidence Propagation Neural Network (BCPNN) [44-46] 
analysis was proposed based on Bayesian logic where the relation 
between the prior and posterior probability was expressed as the 
“information component (IC)”. The IC given by the BCPNN is 
applied by the WHO Uppsala Monitoring Center (UMC) to 
monitor safety signals in their SRSs. 

Other groups have also investigated James-Stein type shrinkage 
estimation strategies in a Bayesian logistic regression model to 
analyze spontaneous adverse event reporting data [47]. More 
recently, Ahmed et al. [48, 49] proposed false discovery rate 
(FDR) estimation for the frequentist methods to address the 
limitation of arbitrary thresholds. As of now, there is no 
consensus on which DPA method is better because there is no 
gold standard dataset available to evaluate the performances of the 
methods.  

3.1.2 Data Mining Algorithms 
The above mentioned DPA methods are effective in detecting 
single Drug-ADR associations, but multi-item ADR associations 
are also important because they could suggest possible drug-drug 
interactions. A typical SRS database contains thousands of drugs 
and ADRs, so it is impractical to enumerate all combinations for 
statistical analysis. Thus, data mining algorithms have been 
employed to address this problem.  

Harpaz et al. [50] applied the association rule mining algorithm to 
identify multi-item ADRs. Using a set of 162,744 reports 
submitted to the FDA in 2008, they identified 1167 multi-item 
ADR associations. Among those identified multi-item associations, 
67% were validated by a domain expert. Later, Harpaz et al. [51] 
applied the biclustering algorithm to identify drug groups that 
share a common set of ADRs in SRS data. Tatonetti et al. [52] 
proposed an algorithm to mine drug-drug interactions from the 
adverse event reports by analyzing latent signals that indirectly 
provide evidence for ADRs. They discovered that co-
administration of pravastatin and paroxetine had a synergistic 
effect on blood glucose. In contrast, neither drug individually was 
found to be associated with such change in the glucose levels. 

3.2 Electronic Medical Records 
Electronic medical records (EMRs) have emerged as a prominent 
resource for observational research as they contain not only 
detailed patient information but also copious longitudinal clinical 
data. Recently, investigators have begun to explore the use of 
EMRs for PhV. EMR databases consist of data in two types of 

formats: (1) structured (e.g., laboratory data) and (2) narrative 
clinical notes. 

3.2.1 Structured Data 
Several groups have employed computational methods on 
structured or coded data in EMRs to identify specific ADR signals 
[53, 54]. Jin et al. [55] proposed a new interestingness measure 
called residual-leverage for association rule mining to identify 
ADR signals from healthcare administrative databases. Ji et al. [56] 
introduced potential causal association rules to generate potential 
causal relationships between a drug and ICD-9 coded signs or 
symptoms in EMRs. Schildcrout et al. [57] analyzed the 
relationship between insulin infusion rates and blood glucose 
levels in patients in an intensive care unit (ICU). Yoon et al. [58] 
demonstrated laboratory abnormality to be a valuable source for 
PhV by examining the odds ratio of laboratory abnormalities 
between a drug-exposed and a matched unexposed group using 10 
years of EMR data. Evaluation of their algorithm on 470 
randomly selected drug-and-abnormal-lab-event pairs produced a 
positive predictive value of 0.837 and negative predictive value of 
0.659. 

3.2.2 Unstructured Data 
Data in narrative clinical notes is not readily accessible for data 
mining, thus natural language processing (NLP) technique is 
required to extract the needed information. Wang et al. [59] first 
employed NLP techniques to extract drug-ADR candidate pairs 
from narrative EMRs and then applied the Chi-square test with 
adjusted volume test to detect ADR signals. Evaluation on 7 
selected drugs and their known ADRs produced an overall 
precision and recall of 0.31 and 0.75 respectively. 

Similarly, Wang et al. [60] developed other methods based on 
mutual information (MI) and data processing inequality (DPI) to 
characterize drug-and-ADR pairs extracted from EMRs. 
Evaluation on a random sample of two drugs and two diseases 
indicated an overall precision of 81%. Furthermore, Wang et al. 
[61] investigated the use of filtering by sections of reports to 
improve the performance of NLP extraction for clinically 
meaningful drug-and-ADR relations. Their evaluation indicated 
that applying filters improved recall from 0.43 to 0.75 and 
precision from 0.16 to 0.31. 

3.3 Non-conventional Data Sources 
3.3.1 Biomedical Literature 
Biomedical literature can be used as a complementary resource for 
prioritizing drug-ADR associations generated from SRSs. Shetty 
and Dalal [62] retrieved articles (published between 1949 and 
2009) that contain mentions of a pre-defined list of drug-and-
ADR pairs (38 drugs and 55 ADRs) from PubMed. The authors 
then constructed a statistical document classifier to remove 
irrelevant articles with mentions of treatment relations. Finally, 
DPA was applied to identify statistically significant pairs from the 
thousands of pairs in the remaining articles. Evaluation showed 
that the method identified true associations with 0.41 and 0.71 in 
precision and recall, respectively. 

3.3.2 Health Forums 
Data posted by users on health-related websites may also contain 
valuable drug safety information. Leaman et al. [63] described a 
system to mine drug-and-ADR relationships as reported by 
consumers in user comments to health-related websites like 
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DailyStrength (http://www.dailystrength.org/). System evaluation 
was conducted on a manually annotated set of 3600 user posts 
corresponding to 6 drugs. The system was shown to achieve 0.78 
in precision and 0.70 in recall. 

Chee et al. [64] explored the use of ensemble classifier over data 
from online health forums to identify potential watchlist drugs 
that have an active FDA safety alert. The authors aggregated 
individuals’ opinions and review of drugs and used NLP 
technique to group drugs that were discussed in similar ways. 
Interestingly, withdrawn drugs were successfully identified based 
on messages even before they were removed from market. 

4. FUTURE PERSPECTIVES 
In this paper, we have provided a general overview of the rich and 
diverse applications of computational approaches with respect to 
different perspectives of PhV. More and more opportunities have 
emerged as a result of new data generated from various platforms 
including EMRs, literature, and self-reported health forums.  

It is evident that a new trend of computational approaches for 
PhV is to link preclinical data from the experimental platform 
with human safety information observed in the post-marketing 
phase [65]. From the systems biology perspective, drugs are 
considered as molecules that induce perturbations to biological 
systems, which involve various molecular interactions such as 
protein-protein interactions, signaling pathways, and pathways of 
drug action and metabolism. When a drug is absorbed into the 
body and interacts with its intended targets, favorable effects are 
expected. However, a drug often binds to other protein pockets 
with varying affinities (off-target interactions), leading to 
observed side-effects. Thus, the body’s response to a drug is a 
complex phenomenological observation that includes both the 
favorable and unfavorable reactions. Hence, it is desirable to 
incorporate various data sources into one framework to 
understand ADRs. 

Moreover, it is essential to identify multi-item ADR associations 
as they may suggest drug interactions. Drug interactions are 
extremely important. For example, if a patient is taking two drugs 
and one of them increases the effect of the other, then the patient 
may have an overdose. Similarly, if the action of a drug is 
inhibited, it may reduce therapeutic effect. Drug interactions may 
also increase the risk of ADRs. Statistical analysis works well 
with the identification of single drug-and-ADR signals, but not 
suitable for drug interaction identification. Alternatively, data 
mining algorithms such as a priori algorithm and clustering 
algorithms are applicable and useful. It provides an excellent 
opportunity for computer scientists to develop new algorithms for 
drug interaction detection. 

Furthermore, EMRs have become an obvious data choice for PhV. 
Many challenges exist in mining EMR for ADR prediction. Much 
detailed and useful information is embedded in the narrative notes 
making data extraction difficult. There have been studies using 
NLP techniques to extract drug and ADR concepts from narrative 
notes for association analysis. Wang et al. [61] have shown that 
filtering information based on note sections improves the 
identification of drug-and-ADR relations. Despite the current 
success, further investigation of other methods, for example more 
sophisticated statistical methods and temporal models, is needed. 

As yet, few studies have explored the automatic construction of 
large cohort or case-control studies from EMRs for ADR 

prediction. There are many issues to consider in the NLP-based 
cohort/case-control study construction. For instance, how to 
extract event concepts from narrative notes? It is common for 
multiple concepts to describe the same outcome/phenotype. Since 
most current practices focus on single outcome at a time, 
phenotype is usually defined manually by experts. However, for 
large-scale ADR studies, how to automatically define the 
phenotypes? Also, how to accurately determine the time-relations 
between events in the narrative text? Each of these questions is an 
active area of research. 

After overcoming the above hurtles in study design, one must 
keep in mind of the confounding problem during analysis. For 
instance, the basic concept behind the cohort design is to partition 
a population into those who are “exposed” (taking a specific drug) 
and “unexposed” (taking a comparator drug or not taking a 
specific drug). A drug is determined to be associated with a 
specified outcome when the outcome occurs more often in 
exposed group than in the unexposed group. Since the group 
assignment is not random, increased attention must be given when 
selecting the ‘unexposed’ group. A common technique to 
minimize the issues caused by confounding and bias is to match 
patient groups based on a set of basic covariates such as gender, 
age, and comorbidities. On the other hand, case-control designs 
divide the study population into those who experienced the 
outcome (“case”) and those who did not experience the outcome 
(“control”). If the drug exposure occurs more frequently in the 
cases than in the controls, the drug is said to be associated with 
the outcome. The same issues with confounding apply to the case-
control studies. Matching two groups before analysis is usually a 
good idea.  

Lastly, it is important to note that most of the existing 
methodologies for PhV involve assessment of association between 
a drug and ADR. However, association does not necessarily imply 
causation. Intuitively, causation not only requires correlation but 
also a counterfactual dependence. Inferring cause-and-effect 
relationships is an intrinsically hard problem in data mining and 
need to be further investigated for the PhV application. 

5. ACKNOWLEDGMENTS 
Dr. Michael Matheny is supported by a Veterans Administration 
HSR&D Career Development Award (CDA-08-020). Dr. Yong 
Hu is partly supported by the National Natural Science 
Foundation of China (NSFC, project no.: 70801020) and the 
Science and Technology Planning Project of Guangdong Province, 
China (project no.: 2010B010600034). Dr. Hua Xu is supported 
by grants from NLM R01-LM007995 and NCI R01CA141307.  

 

6. REFERENCES 
[1] Pirmohamed, M., Breckenridge, A.M., Kitteringham, N.R. 

and Park, B.K. Adverse drug reactions. BMJ, 316, 7140 (Apr 
25 1998), 1295-1298. 

[2] Budnitz, D.S., Pollock, D.A., Weidenbach, K.N., 
Mendelsohn, A.B., Schroeder, T.J. and Annest, J.L. National 
surveillance of emergency department visits for outpatient 
adverse drug events. JAMA, 296, 15 (Oct 18 2006), 1858-
1866. 

[3] Lazarou, J., Pomeranz, B.H. and Corey, P.N. Incidence of 
adverse drug reactions in hospitalized patients: a meta-

SIGKDD Explorations Volume 14, Issue 1 Page 39



 

analysis of prospective studies. JAMA, 279, 15 (Apr 15 
1998), 1200-1205. 

[4] Moore, T.J., Cohen, M.R. and Furberg, C.D. Serious adverse 
drug events reported to the Food and Drug Administration, 
1998-2005. Arch Intern Med, 167, 16 (Sep 10 2007), 1752-
1759. 

[5] Giacomini, K.M. Krauss, R.M., Roden, D.M., Eichelbaum, 
M., Hayden, M.R. and Nakamura, Y. when good drugs go 
bad. Nature, 446, 7139 (Apr 26 2007), 975-977. 

[6] Leone, R., Sottosanti, L., Luisa lorio, M. Santuccio, C., 
Conforti, A., Sabatini, V., Moretti, U. and Venegoni, M. 
Drug-related deaths: an analysis of the Italian spontaneous 
reporting database. Drug Saf, 31, 8 (2008), 703-713. 

[7] van der Hooft, C.S. Sturkenboom, M.C., van Grootheest, K., 
Kingma, H.J. and Stricker, B.H. Adverse drug reaction-
related hospitalizations: a nationwide study in the 
Netherlands. Drug Saf. 29, 2 (2006), 161-168. 

[8] Paul, S.M., Mytelka, D.S., Dunwiddie, C.T., Persinger, C.C., 
Munos, B.H., Lindborg, S.R. and Schacht, A.L. How to 
improve R&D productivity: the pharmaceutical industry’s 
grand challenge. Nat Rev Drug Discov, 9, 3 (Mar 2010), 
203-214. 

[9] Hopkins, A.L. Network pharmacology: the next paradigm in 
drug discovery. Nat Chem Biol, 4, 11 (Nov 2008), 682-690. 

[10] Austin, C. P., Brady, L. S., Insel, T. R. and Collins, F. S. 
NIH Molecular Libraries Initiative. Science, 306, 5699 (Nov 
12 2004), 1138-1139. 

[11] Whitebread, S., Hamon, J., Bojanic, D. and Urban, L. 
Keynote review: in vitro safety pharmacology profiling: an 
essential tool for successful drug development. Drug Discov 
Today, 10, 21 (Nov 1 2005), 1421-1433. 

[12] Liebler, D.C. and Guengerich, F.P. Elucidating mechanisms 
of drug-induced toxicity. Nat Rev Drug Discov, 4, 5 (May 
2005), 410-420. 

[13] Blagg, J. Structure-activity relationships for in vitro and in 
vivo toxicity. Annu Rep Med Chem, 41 (2006), 353-368. 

[14] Fliri, A.F., Loging, W.T., Thadeio, P.F. and Volkmann, R.A. 
Analysis of drug-induced effect patterns to link structure and 
side effects of medicines. Nat Chem Biol, 1, 7 (Dec 2005), 
389-397. 

[15] Campillos, M., Kuhn, M., Gavin, A.C., Jensen, L.J. and Bork, 
P. Drug target identification using side-effect similarity. 
Science, 321, 5886 (Jul 11 2008), 263-266. 

[16] Scheiber, J., Chen, B., Milik, M., Sukuru, S.C., Bender, a., 
Mikhailov, D., Whitebread, S., Hamon, J., Azzaoui, K., 
Urban, L., Glick, M., Davies, J.W. and Jenkins, J.L. Gaining 
insight into off-target mediated effects of drug candidates 
with a comprehensive systems chemical biology analysis. J 
Chem Inf Model, 49, 2 (Feb 2009), 308-317. 

[17] Fuzuzaki, M., Seki, M., Kashima, H. and Sese, J. Side effect 
prediction using cooperative pathways. In Proceedings of 
IEEE International Conference on Bioinformatics and 
Biomedicine ’09 (Washington DC, 2009), 142-147. 

[18] Xie, L., Li, J. and Bourne, P.E. Drug discovery using 
chemical systems biology: identification of the protein-ligand 

binding network to explain the side effects of CETP 
inhibitors. PLoS Comput Biol, 5, 5 (May 2009), e1000387. 

[19] Brouwers, L., Iskar, M., Zeller, G., van Noort, V. and Bork, 
P. Network neighbors of drug targets contribute to drug side-
effect similarity. PLoS One, 6, 7 (Jul, 2011), e22187. 

[20] Pouliot, Y., Chiang, A. P. and Butte, A. J. Predicting adverse 
drug reactions using publicly available PubChem BioAssay 
data. Clin Pharmacol Ther, 90, 1 (Jul 2011), 90-99. 

[21] Brown, E. G., Wood, L. and Wood, S. The medical 
dictionary for regulatory activities (MedDRA). Drug Safety, 
20, (1999), 109-117. 

[22] Chen, B., Wild, D. and Guha, R. PubChem as a source of 
polypharmacology. J Chem Inf Model, 49, 9 (Sep 2009), 
2044-2055. 

[23] Bolton, E., Wang, Y., Thiessen, P. A. and Bryant, S. H. 
PubChem: integrated platform of small molecules and 
biological activities. American Chemical Society, City, 2008. 

[24] Bender, A., Scheiber, J., Glick, M., Davies, J.W., Azzaoui, 
K., Hamon, J., Urban, L., Whitebread, S. and Jenkins, J.L. 
Analysis of pharmacology data and the prediction of adverse 
drug reactions and off-target effects from chemical structure. 
ChemMedChem, 2, 6, (Jun 2007), 861-873. 

[25] Scheiber, J., Jenkins, J.L., Sukuru, S.C., Bender, A., 
Mikhailov, D., Milik, M., Azzaoui, K., Whitebread, S., 
Hamon, J., Urban, L., Glick, M. and Davies, J.W. Mapping 
adverse drug reactions in chemical space. J Med Chem, 52, 9 
(May 14 2009), 3103-3107. 

[26] Yamanishi, Y., Kotera, M., Kanehisa, M. and Goto, S. Drug-
target interaction prediction from chemical, genomic and 
pharmacological data in an integrated framework. 
Bioinformatics, 26, 12 (Jun 15 2010), i246-254. 

[27] Hammann, F., Gutmann, H., Vogt, N., Helma, C. and Drewe, 
J. Prediction of adverse drug reactions using decision tree 
modeling. Clin Pharmacol Ther, 88, 1 (Jul 2010), 52-59. 

[28] Pauwels, E., Stoven, V. and Yamanishi, Y. Predicting drug 
side-effect profiles: a chemical fragment-based approach. 
BMC Bioinformatics, 122011), 169. 

[29] Kuhn, M., Campillos, M., Letunic, I., Jensen, L. J. and Bork, 
P. A side effect resource to capture phenotypic effects of 
drugs. Mol Syst Biol, 62010), 343. 

[30] Huang, L. C., Wu, X. and Chen, J. Y. Predicting adverse side 
effects of drugs. BMC Genomics, 12 Suppl 5(Dec 23 2011), 
S11. 

[31] Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, 
H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., 
Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., 
Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., 
Ringwald, M., Rubin, G. M. and Sherlock, G. Gene ontology: 
tool for the unification of biology. The Gene Ontology 
Consortium. Nat Genet, 25, 1 (May 2000), 25-29. 

[32] Cami, A., Arnold, A., Manzi, S. and Reis, B. Predicting 
adverse drug events using pharmacological network models. 
Sci Transl Med, 3, 114 (Dec 21 2011), 114ra127. 

[33] Liu, M., Wu, Y., Chen, Y., Sun, J., Zhao, Z., Chen, X. W., 
Matheny, M. E. and Xu, H. Large-scale Prediction of 

SIGKDD Explorations Volume 14, Issue 1 Page 40



 

Adverse Drug Reactions Using Chemical, Biological, and 
Phenotypic Properties of Drugs. J Am Med Inform Assoc, 19, 
(2012), e28-e35. 

[34] Montastruc, J. L., Sommet, A., Bagheri, H. and Lapeyre-
Mestre, M. Benefits and strengths of the disproportionality 
analysis for identification of adverse drug reactions in a 
pharmacovigilance database. Br J Clin Pharmacol, 72, 6 (Dec 
2011), 905-908. 

[35] Bate, A. and Evans, S. J. Quantitative signal detection using 
spontaneous ADR reporting. Pharmacoepidemiol Drug Saf, 
18, 6 (Jun 2009), 427-436. 

[36] Hauben, M., Madigan, D., Gerrits, C. M., Walsh, L. and Van 
Puijenbroek, E. P. The role of data mining in 
pharmacovigilance. Expert Opin Drug Saf, 4, 5 (Sep 2005), 
929-948. 

[37] Evans, S. J., Waller, P. C. and Davis, S. Use of proportional 
reporting ratios (PRRs) for signal generation from 
spontaneous adverse drug reaction reports. 
Pharmacoepidemiol Drug Saf, 10, 6 (Oct-Nov 2001), 483-
486. 

[38] Szarfman, A., Machado, S. G. and O'Neill, R. T. Use of 
screening algorithms and computer systems to efficiently 
signal higher-than-expected combinations of drugs and 
events in the US FDA's spontaneous reports database. Drug 
Saf, 25, 6 2002), 381-392. 

[39] Ahmed, I., Haramburu, F., Fourrier-Reglat, A., Thiessard, F., 
Kreft-Jais, C., Miremont-Salame, G., Begaud, B. and Tubert-
Bitter, P. Bayesian pharmacovigilance signal detection 
methods revisited in a multiple comparison setting. Stat Med, 
28, 13 (Jun 15 2009), 1774-1792. 

[40] DuMouchel, W. Bayesian data mining in large frequency 
tables, with an application to the FDA spontaneous reporting 
system. The American Statistician, 53, 3 1999), 177-202. 

[41] Almenoff, J. S., Pattishall, E. N., Gibbs, T. G., DuMouchel, 
W., Evans, S. J. and Yuen, N. Novel statistical tools for 
monitoring the safety of marketed drugs. Clin Pharmacol 
Ther, 82, 2 (Aug 2007), 157-166. 

[42] DuMouchel, W., Smith, E. T., Beasley, R., Nelson, H., Yang, 
X., Fram, D. and Almenoff, J. S. Association of asthma 
therapy and Churg-Strauss syndrome: an analysis of 
postmarketing surveillance data. Clin Ther, 26, 7 (Jul 2004), 
1092-1104. 

[43] Gould, A. L. Accounting for multiplicity in the evaluation of 
"signals" obtained by data mining from spontaneous report 
adverse event databases. Biom J, 49, 1 (Feb 2007), 151-165. 

[44] Bate, A., Lindquist, M., Edwards, I. R., Olsson, S., Orre, R., 
Lansner, A. and De Freitas, R. M. A Bayesian neural 
network method for adverse drug reaction signal generation. 
Eur J Clin Pharmacol, 54, 4 (Jun 1998), 315-321. 

[45] Lindquist, M., Edwards, I. R., Bate, A., Fucik, H., Nunes, A. 
M. and Stahl, M. From association to alert--a revised 
approach to international signal analysis. Pharmacoepidemiol 
Drug Saf, 8 Suppl 1(Apr 1999), S15-25. 

[46] Lindquist, M., Stahl, M., Bate, A., Edwards, I. R. and 
Meyboom, R. H. A retrospective evaluation of a data mining 
approach to aid finding new adverse drug reaction signals in 

the WHO international database. Drug Saf, 23, 6 (Dec 2000), 
533-542. 

[47] An, L., Fung, K. Y. and Krewski, D. Mining 
pharmacovigilance data using Bayesian logistic regression 
with James-Stein type shrinkage estimation. J Biopharm Stat, 
20, 5 (Sep 2010), 998-1012. 

[48] Ahmed, I., Dalmasso, C., Haramburu, F., Thiessard, F., Broet, 
P. and Tubert-Bitter, P. False discovery rate estimation for 
frequentist pharmacovigilance signal detection methods. 
Biometrics, 66, 1 (Mar 2010), 301-309. 

[49] Ahmed, I., Thiessard, F., Miremont-Salame, G., Begaud, B. 
and Tubert-Bitter, P. Pharmacovigilance data mining with 
methods based on false discovery rates: a comparative 
simulation study. Clin Pharmacol Ther, 88, 4 (Oct 2010), 
492-498. 

[50] Harpaz, R., Chase, H. S. and Friedman, C. Mining multi-item 
drug adverse effect associations in spontaneous reporting 
systems. BMC Bioinformatics, 11 Suppl 92010), S7. 

[51] Harpaz, R., Perez, H., Chase, H. S., Rabadan, R., Hripcsak, 
G. and Friedman, C. Biclustering of adverse drug events in 
the FDA's spontaneous reporting system. Clin Pharmacol 
Ther, 89, 2 (Feb 2011), 243-250. 

[52] Tatonetti, N. P., Denny, J. C., Murphy, S. N., Fernald, G. H., 
Krishnan, G., Castro, V., Yue, P., Tsao, P. S., Kohane, I., 
Roden, D. M. and Altman, R. B. Detecting drug interactions 
from adverse-event reports: interaction between paroxetine 
and pravastatin increases blood glucose levels. Clin 
Pharmacol Ther, 90, 1 (Jul 2011), 133-142. 

[53] Brown, J. S., Kulldorff, M., Chan, K. A., Davis, R. L., 
Graham, D., Pettus, P. T., Andrade, S. E., Raebel, M. A., 
Herrinton, L., Roblin, D., Boudreau, D., Smith, D., Gurwitz, 
J. H., Gunter, M. J. and Platt, R. Early detection of adverse 
drug events within population-based health networks: 
application of sequential testing methods. 
Pharmacoepidemiol Drug Saf, 16, 12 (Dec 2007), 1275-1284. 

[54] Berlowitz, D. R., Miller, D. R., Oliveria, S. A., Cunningham, 
F., Gomez-Caminero, A. and Rothendler, J. A. Differential 
associations of beta-blockers with hemorrhagic events for 
chronic heart failure patients on warfarin. 
Pharmacoepidemiol Drug Saf, 15, 11 (Nov 2006), 799-807. 

[55] Jin, H. D., Chen, J., He, H. X., Williams, G. J., Kelman, C. 
and O'Keefe, C. M. Mining unexpected temporal 
associations: Applications in detecting adverse drug 
reactions. Ieee T Inf Technol B, 12, 4 (Jul 2008), 488-500. 

[56] Ji, Y. Q., Ying, H., Dews, P., Mansour, A., Tran, J., Miller, 
R. E. and Massanari, R. M. A Potential Causal Association 
Mining Algorithm for Screening Adverse Drug Reactions in 
Postmarketing Surveillance. Ieee T Inf Technol B, 15, 3 
(May 2011), 428-437. 

[57] Schildcrout, J. S., Haneuse, S., Peterson, J. F., Denny, J. C., 
Matheny, M. E., Waitman, L. R. and Miller, R. A. Analyses 
of longitudinal, hospital clinical laboratory data with 
application to blood glucose concentrations. Stat Med, 30, 27 
(Nov 30 2011), 3208-3220. 

[58] Yoon, D., Park, M. Y., Choi, N. K., Park, B. J., Kim, J. H. 
and Park, R. W. Detection of Adverse Drug Reaction Signals 

SIGKDD Explorations Volume 14, Issue 1 Page 41



 

Using an Electronic Health Records Database: Comparison 
of the Laboratory Extreme Abnormality Ratio (CLEAR) 
Algorithm. Clin Pharmacol Ther(Jan 11 2012). 

[59] Wang, X., Hripcsak, G., Markatou, M. and Friedman, C. 
Active computerized pharmacovigilance using natural 
language processing, statistics, and electronic health records: 
a feasibility study. J Am Med Inform Assoc, 16, 3 (May-Jun 
2009), 328-337. 

[60] Wang, X., Hripcsak, G. and Friedman, C. Characterizing 
environmental and phenotypic associations using information 
theory and electronic health records. BMC Bioinformatics, 
10 Suppl 92009), S13. 

[61] Wang, X., Chase, H., Markatou, M., Hripcsak, G. and 
Friedman, C. Selecting information in electronic health 
records for knowledge acquisition. J Biomed Inform, 43, 4 
(Aug 2010), 595-601. 

[62] Shetty, K. D. and Dalal, S. R. Using information mining of 
the medical literature to improve drug safety. J Am Med 
Inform Assoc, 18, 5 (Sep-Oct 2011), 668-674. 

[63] Leaman, R., Wojtulewicz, L., Sullivan, R., Skariah, A., Yang, 
J. and Gonzalez, G. Towards internet-age pharmacovigilance: 
extracting adverse drug reactions from user posts to health-
related social networks. Proceedings of the 2010 workshop 
on Biomedical Natural Language Processing, (2010), 117-
125. 

[64] Chee, B. W., Berlin, R. and Schatz, B. Predicting adverse 
drug events from personal health messages. AMIA Annu 
Symp Proc (2011), Washington DC, 217-226. 

[65] Harpaz, R., Dumouchel, W., Shah, N. H., Madigan, D., Ryan, 
P. and Friedman, C. Novel Data-Mining Methodologies for 
Adverse Drug Event Discovery and Analysis. Clin 
Pharmacol Ther(May 2 2012). 

 

 

 

SIGKDD Explorations Volume 14, Issue 1 Page 42




