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ABSTRACT
The field of medical imaging has shown substantial growth
over the last decade. Even more dramatic increase was ob-
served in the use of machine learning and data mining tech-
niques within this field. In this paper, we discuss three as-
pects related to information mining in the domain of medical
imaging: the target user groups (“for whom”), the infor-
mation to mine (“what”), and technologies to enable min-
ing (“how”). Specifically, we focus on three types of in-
formation: anatomical, physiological and pathological, and
present use cases for each one of them. Furthermore, we
introduce representative methods and algorithms that are
effective for solving these problems. We conclude the paper
by discussing some major trends in the related domains for
the coming decade.

1. INTRODUCTION
The application of machine learning and data mining tech-
niques in the domain of medical imaging has gained momen-
tum in the last decade. This is illustrated in Figure 1, where
we show the statistics gathered through a simple data min-
ing experiment on Google Scholar, by searching for terms
“medical image”, “machine learning”, and “data mining”,
and their combinations. Comparing the period from 2005
to 2011 to the same period a decade earlier, the number of
articles related to “medical image” has doubled from 14600
to 32500. However, some topics increased much more than
others: “medical image” articles which are further related to
“machine learning” or “data mining” increased more than
10-fold, from 447 to 6150 and 417 to 4420, respectively.

A medical image is worth a thousand words; in some cases,
a thousand dollars as well. Indeed, it can be priceless if it
reveals an early sign of a disease which might be cured or at
least properly managed thus increasing the quality of life if
detected and treated early. However, several factors affect
the ability to mine information out of medical images:

1. Medical images are most useful when acquired using a
suitable protocol, and with the best parameters. This
is often not easy to achieve. Data mining algorithms
can provide guidance and automate some aspect of
the image acquisition process based on, for example,
learning from a set of “good” data.

2. There is an ever-increasing amount of data produced
by a modern medical imaging scan [14]. It is not un-
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Figure 1: Increase of research activities in related fields
as evidenced by the number of articles returned in Google
Scholar, comparing the period 2005-2011 with a decade ear-
lier 1995-2001. The exact query was formulated using a
custom range and excluding patents and citations

usual for a study to produce more than 1000 images
with each image containing 512 by 512 pixels. Addi-
tionally to this “data explosion”, there is also mount-
ing pressure to accomplish the same task in less and
less time, in order to reduce the per-case cost.

3. There are many intrinsic subtleties and variations of
the manifestation of anatomical structures and lesions.
For example, a lesion in a breast (lung / colon) can be
extremely inconspicuous in a mammogram (X-Ray /
Computer Tomography (CT)).

4. The lack of automatic and quantitative tools is another
substantial limitation. Insightful information (e.g., an-
gulations of bones, alignment of vertebrae, diameters
of nerve paths [4]) can be more easily and adequately
reported and followed-up with the help of such tools.

In this paper, we provide an overview of target user groups
(Section 2), discuss what information to mine from medical
images (Section 3) and highlight some of the most effective
methods and algorithms for mining anatomical, physiologi-
cal, and pathological information from medical images (Sec-
tion 4). We discuss four major trends that will affect the
domain of medical image mining in the concluding section.

2. THE TARGET USER GROUPS
The improved access to medical image data using data min-
ing techniques will benefit various consumers, including clin-
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icians (technicians, radiologists, cardiologists, etc.), patients,
and researchers.

2.1 Clinicians
As the primary interpreter and consumer of medical images,
radiologists, cardiologists, and referring physicians will ben-
efit from any additional meta-data or information that will
help them see more, see better, or see faster. For example,
for lung CT scans, it is a challenge for a radiologist to scroll
through 500 or more images to look for lung nodules as small
as 3-5mm. An automated algorithm can propose candidates
of lung nodules to the radiologist, reducing the chance of
misses. For cardiologists, an automated algorithm can de-
tect and track the heart muscle in an ultrasound cardiac
scan, and provide more accurate and consistent estimate for
cardiac function [21].

Technicians, operating a scanner to acquire medical images,
can also benefit from information mining, since it can help
in achieving faster acquisitions as well as higher consistency
and quality. The acquisition of medical images is often a
multi-step procedure which begins with a scout scan in-
tended to provide a rough overview of the patient. An algo-
rithm that can detect anatomical information in the scout
image can automatically steer the scanner to the correct an-
gulations and focusing for subsequent scans, thus speeding
up the scanning process and improving consistency [11].

2.2 Patients
In the era of digital imaging, it is increasingly common for
patients to get access to their medical images in addition
to the report from clinicians. Moreover, with the explo-
sion of medical and health information on the Internet, and
the unprecedented accessibility through search engines and
specialized web sites, patients (as well as the general pop-
ulation) are becoming more proactive towards healthcare,
and demanding more information and explanations. Im-
age databases of skin lesions, for example, and associated
matching tools can help the search of similar lesions with
special appearances, and help educating the patient with
regard to the underlying clinical condition. In the coming
years, we believe that image mining tools can enable broader
and deeper involvement of patients in more medical imaging
fields.

2.3 Researchers
Undoubtedly, population models and statistics extracted from
a large collection of medical images will be valuable for clini-
cal, medical, biological, social, and public policy researchers.
Large-scale population study and quantitative analysis can
also provide public policy makers with adequate data for
their policy decisions. For example, whether public health
programs should reimburse for cancer screening using a par-
ticular imaging modality is a very complex decision. Infor-
mation mining from large cohorts of clinical and image data
could potentially provide the necessary evidence to support
the most cost-effective option [3].

3. WHAT INFORMATION TO MINE ?
In this section, we broadly discuss three classes of information—
anatomical, physiological, and pathological—that can be mined
from medical images, and elaborate on their usefulness. This
is not intended to be an exhaustive list. Anatomical infor-
mation pertains to the structure of the human body, while

Figure 2: Automatic organ segmentation based on CT data
which is overlaid on PET data for quantitative analysis.

physiological information is related to the function of the
body. The former is directly visualized in most medical
images, whereas the latter is less direct and less accessible
since its manifestation and quantification are more dynamic
in nature and require specific techniques. With the intro-
duction of more functional imaging modalities (functional
MRI, PET etc.), today we can also extract an abundance
of physiological information from medical images. Patho-
logical information refers to the abnormalities related to or
caused by diseases that manifest in the medical images.

3.1 Anatomical Information
Two basic questions can be answered related to an anatom-
ical structure: ’Where is it in the image?’ and ’What is
it?’. Although an expert human user can answer these seem-
ingly fundamental questions with a quick glance of the im-
age, automatic answers are very useful as stepping-stones
to other intelligent, organ-specific post-processing and anal-
ysis. Furthermore, while anatomical localization is part of
the training of each physician, it may be a tedious and time
consuming process.

3.1.1 Organ Location and Delineation
The first level of information that can be extracted from
a medical image is the location and extent of organ struc-
tures. This may not be useful for a radiologist initially be-
cause they are trained to see such structures and further
detect anomalies. However, automatic and precise 3D delin-
eation can enable organ-specific quantitative analysis, and
improve the reporting process. Figure 2 illustrates organs
delineated using a CT image overlaid on a PET image to
provide organ-specific FDG uptake statistics. This is useful
in cancer detection and further follow-up [17].

3.1.2 Anatomical Labeling
In addition to general organ delineation, automatic labeling
of anatomical structures such as vertebrae, ribs, or the blood
vessels can speed up the reading and reporting workflow.
To label such kind of repetitive (e.g., vertebrae) or complex
structures (e.g., vessel tree), the relationship or configura-
tion of multiple structures has to be considered in order to
correctly label each component (see Figure 3). This is a
rather challenging task since the variations in the popula-
tion are quite high. For example, in the case of vertebrae:
there are many asymptomatic variations [15], and correct la-
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Figure 3: Automatic spine labeling and curved reformat (of
a scoliotic patient) in a MR image.

beling requires a careful walk-through which can be tedious
and error-prone in the cases of scoliosis or kyphosis. An
automatic labeling algorithm would be a great help [18].

3.2 Physiological Information
In addition to static anatomical information, medical imag-
ing can capture dynamic, functional information. The list
of capabilities and possibilities is enormous and growing. In
this section we explore only a few examples.

3.2.1 Motion
The first effective check of cardiac function is usually ob-
tained through a cardiac ultrasound examination, in which
cardiac contractions and relaxations are captured in a 2D
or 3D “movie”. An automatic motion-tracking algorithm
can quantitatively measure the speed and extent of muscle
contraction and relaxation within different coronary territo-
ries (see Figure 4). Since blocked coronary arteries result
in reduced muscle activity, such motion analysis can aid the
detection of cardiovascular disease [21].

3.2.2 Glucose or oxygen consumption
The functioning of the brain and the body requires oxy-
gen and nutrients (glucose), and there are medical imaging
modalities that can capture exactly these activities. Positron
emission tomography measures the concentration of glucose
at various locations in the body by “tracing” radioactive
glucose molecules. Since cancer cells tend to consume a
higher amount of glucose, they appear bright in a PET im-
age. Functional MRI, on the other hand, can “read our
brains” by exploiting the fact that local concentrations of
oxygen associated with changes in blood flow become mea-
surable using MRI.

For mining PET images, the challenge is the consistency
and comparability of different acquisitions, even after stan-

Figure 4: Automatic analysis of cardiac function using a
motion tracking algorithm and an ischemia classification al-
gorithm. The red section in the right image highlights an
ischemic segment of the myocardium.

dardization using the so-called “standardized uptake values”
or SUV. The challenge of mining functional MRI (fMRI)
images is that of obtaining a large, statistically significant
number of well-controlled imaging studies.

3.2.3 Biochemical data
MR-spectroscopy provides tissue characterization by imag-
ing the metabolite status. By using color-coding, we can
visualize both morphology and biochemical status in the
body. Such metabolite imaging can help to characterize le-
sions when a biopsy is difficult or impossible. It can also
help the evaluation of therapy response before anatomical
changes occur.

3.3 Abnormal and pathological information
During interpretation of medical images, clinicians typically
have to search for abnormal structures and then characterize
them in order to form a clinical conclusion.

The search for abnormalities is often very challenging due
to large amounts of data and the fact that some of the find-
ings are subtle and thus easy to overlook. Mining algorithms
can learn from a large image database of a particular type
of abnormality, and prompt the clinician with candidate lo-
cations in a new image. Examples of such abnormalities in-
clude lesions or micro-calcifications in a mammogram; lung
nodules in chest X-rays or chest CT; and colon polyps in CT
colonography.

The quantitative characterization of an abnormality can be
challenging and time-consuming as well, either due to the
need to compare against a normal population model—e.g.,
quantitative assessment of amyloid plaque deposition and
neuronal tangle formation in the brain for the analysis of
Alzheimer’s disease using PET; or due to the 3D or 4D (i.e.,
3D in time) nature of the problem—e.g., estimating the ejec-
tion fraction of the heart in echocardiogram [21].

4. METHODS AND ALGORITHMS
In this section we provide examples of novel medical im-
age mining algorithms, covering different aspects of the do-
main, from image analysis to pattern recognition and ma-
chine learning.

4.1 Discovering anatomical signatures
Given a 3D medical image, an experienced radiologist is able
to quickly localize a small anatomical structure, while an
untrained college student might be completely clueless. The
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“extraordinary” capability of radiologists comes from their
knowledge of anatomical signatures, which is extracted from
a large number of medical images during their medical train-
ing. More specifically, anatomical signature is the anatomi-
cal commonality across population in terms of appearance,
shape and geometric configuration. Machine learning is an
ideal tool to discover them from a large number of medical
images.

4.1.1 Appearance signatures
Appearance signature originates from low-level image infor-
mation. It consists of the combination of a set of image
features, which optimally identifies specific anatomical prim-
itives, e.g., anatomical landmark and organ boundary.

Anatomical landmarks Landmark is the most fundamen-
tal anatomical primitive. Two principles are employed
to “discover” appearance signatures of landmarks from
a large number of datasets. (1) A feature pool is con-
structed that contains an extremely large number of
features (10,000+). (2) A machine leaning algorithm
is used to select the most distinctive features and com-
bine them. To be more precise, feature construction
starts from a set of mother functions, each of which
consists of one or more 2D/3D rectangle functions of
the form

H(x) =

N∑
i=1

piR(x− ai), (1)

where pi ∈ {−1, +1} is the polarity of the rectangle
function defined as R(x) = 1 if ‖x‖∞ ≤ 1 and zero oth-
erwise. ai is the translation and x is the image location
where the feature is being computed. Figure 5 shows
examples of some representative mother functions. By
scaling and convolving these mother functions with the
original image I, a set of spatial-frequency spaces F
are constructed as: Fl = Hl(sx) ∗ I(x), where s and l
denote the scaling factor and the inter of the mother
function respectively. For any pixel/voxel x0 under
study, its feature vector =(x0) is built by sampling
these spatial-frequency spaces F in its neighborhood.

=(x0) = ∪l {Fl(x, sj) | x ∈ N(x0), smin < s < smax} ,
(2)

where N(x0) defines the neighborhood of x0, and smin

and smax define the minimum and maximum values
of the scale used. By tuning the sampling scheme,
one can easily construct a feature space with 10,000+
features for any pixel/voxel.

Given such a large feature pool, Adaboost is used to se-
lect the features and combine them for landmark iden-
tification. In principle, the problem is formulated as
binary classification, where pixels/voxels close to man-
ually annotated landmarks are considered as positive
training samples and remaining pixels/voxels are re-
garded as negatives. The output of the learnt classifier
is the likelihood of a specific landmark at position x.
This is in fact the learned appearance signature of an
anatomical landmark [19].

Organ boundary In the same spirit, the signature of or-
gan boundary can also be learnt. However, the chal-
lenge here is that some organs, e.g., liver, exhibit highly

Figure 5: Some representative examples of mother functions.
Blue/thick and red/thin boxes denote the non-zero ranges of
3D rectangle functions with positive and negative polarities,
respectively. (Figure reprinted from [16])

Figure 6: Heterogeneous appearance characteristics along
the liver boundary.

heterogeneous appearance characteristics along bound-
aries (see Figure 6). Hence, it is almost impossible to
capture the boundary signature with a single classifier.

We proposed a “divide-and-conquer” strategy [17] to
learn spatially adaptive boundary signatures. The ba-
sic idea is to divide the organ surface/contour into
several partitions, whose boundary appearance char-
acteristics are relatively more homogenous. Now, it is
easy to learn the local boundary “signatures” of these
partitions. To achieve this goal, we designed an itera-
tive approach, in which Adaboost based learning and
Affinity Propagation clustering are alternatively per-
formed. This approach starts by training an Adaboost
classifier with all samples around the organ boundary.
The selected features are then used by Affinity Prop-
agation to cluster vertices into different groups. Spa-
tial proximity of vertices is also incorporated to ensure
continuous partitions. As shown in Figure 7, an organ
surface/contour can be eventually divided into several
sub-divisions. Each sub-division is attached to a learnt
Adaboost classifier, which captures the boundary sig-
nature in the local region.

4.1.2 Geometric/shape signatures
Different from photographs taken in daily life, where ob-
jects often have arbitrary context, e.g., a person can stand
by a car, a house or another person, anatomical structures
in medical image have strong geometric/shape correlations.
For example, heart is located in-between two lungs. Hence,
geometric/shape signatures play an important role in the in-
terpretation of medical images, especially when appearance
cues become weak or misleading due to severe diseases or
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Figure 7: (a) Hierarchy of liver surface partition. (b) Details
of partitioned liver surface, where different colors denote
different sub-division. (Figure reprinted from [17])

Figure 8: Schematic explanation of voting scheme. Detec-
tion pi receives votes from other landmarks.

imaging artifacts. In addition, geometric/shape signatures
themselves are critical diagnostic evidence for various clini-
cal studies.

Spatial configurations Spatial correlation across differ-
ent anatomical primitives is one strong geometric sig-
nature, which can be employed to correct detections
derived by misleading appearance cues. Accordingly,
the robustness of this signature with respect to erro-
neous/missing detections becomes very critical. We
proposed a group-wise configuration model to charac-
terize the geometric signature [11]. Instead of mod-
eling the spatial correlations across a large group of
landmarks, we learn a large number of spatial correla-
tions across small groups (2, 3 or 4). At run-time, each
detected location pi receives a set of votes from other
landmarks in different groups (see Figure 8). All votes
received by pi will be combined in a non-linear way
to evaluate the eligibility of pi. Erroneous detections
are then iteratively removed and predicted by learned
group-wised spatial configurations. Since the learned
geometric signature is embedded in a consensus of a
large number of small landmark groups, it is robust to
individual landmarking errors that are often caused by
diseases/imaging artifacts.

Shape Shape is a more sophisticated description of spa-
tial relations across different anatomical primitives.

Figure 9: Schematic explanation of sparse shape composi-
tion. (Figure reprinted from [20])

The limitation of existing shape signature/prior mod-
eling mainly comes from the parametric assumptions
of shape statistics. To alleviate this limitation, we de-
signed a parameter-free approach to characterize shape
signature [20]. Our method is designed according to
two observations about sparsity in medical images: (1)
A shape instance can be approximated by a sparse
combination of other shapes in the same category. (2)
A shape instance derived by low-level appearance in-
formation might include gross errors. However, these
gross errors are also sparse.

Therefore, for any shape instance derived by appear-
ance cues, we approximate it by a sparse composition
of shape instances of the same organ (see Figure 9).
In this manner, the shape signature/prior is applied
on-the-fly. Mathematically, our objective function is
formulated as:

argx,e,β min ‖T (y, β)−Dx−e‖2
2, , ‖x‖0 ≤ k1, ‖e‖0 ≤ k2,

(3)
where y is the input shape derived by appearance cues,
which might include gross errors. D is the shape repos-
itory containing all training shape instances. T (y, β) is
the transformation that brings y to the training shape
space. x and e denote the composition coefficients and
gross errors, respectively. Both of them are imposed
with sparsity constraints, which is in accordance with
the two sparsity observations identified above.

The objective function can be optimized efficiently us-
ing sparse learning theory. Compared to classic shape
prior/signature modeling, our method is robust to gross
errors and flexible to arbitrary shape statistics. In ad-
dition, given new training shapes, the shape repository
can be easily updated without extensive re-training,
which satisfies real-world medical imaging applications.

4.2 Feature engineering
One effective way to mine the information contained in im-
ages is by explicitly computing numbers that quantify cer-
tain properties of the structures of interest. This is often
what is done for automatic detection of abnormalities since
the abnormality is described by experts as possessing specific
characteristics, or features. For example, a breast MR radi-
ologist may describe a mass as a structure having definable
margins with a separable distinct edge from the surround-
ing glandular tissue and having no normal tissue within it.
He or she may proceed to describe ductal and segmental
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Figure 10: Illustration of various components for polyp detection in CT images. The colon wall needs to be segmented out
from the image, liquid tagging must be removed and candidate structures need to be described with shape and texture features
to distinguish them from false positives. The candidates should be visible in both prone (a) and supine (b) views.

enhancements as linear or sheet-like enhancements not defi-
nitely in a duct and that cannot be otherwise characterized,
probably representing the same process at two different res-
olutions, with or without discernible margins and with or
without branches.

Similarly, an abdominal radiologist may describe a colonic
polyp as a protuberance in the colonic wall at least 6 mm in
diameter and at least 3 mm in height that can be flat, sessile
or pedunculated in shape, its pattern of attenuation being
characteristic of soft, non-fatty tissue, usually homogenous.

In order to design features that are useful in detecting and
characterizing such structures, it is often necessary to solve
various intermediary problems. For example the simple fact
that a colonic polyp is a structure on the colon wall implies
that an automatic detection algorithm should first identify
and separate (segment) the colon wall from the entire image.

Without attempting to be exhaustive, we discuss specific
examples of such features in the context of the detection and
characterization of colonic polyps and breast MR lesions.

4.2.1 Detection and characterization of polyps
The detection of polyps in CT images requires the segmen-
tation of the colon wall from the image. In modern prepa-
rations, this requires the virtual removal of tagging liquid, a
process known as electronic cleansing (Figure 10). Once the
colon is segmented out, a candidate-generation stage com-
putes a set of geometric and texture features on each location
of the wall. A cascading approach is used to progressively
reduce the number of candidate locations before comput-
ing more computationally expensive features. Morphologi-
cal features include global shape features, analysis of curva-
ture patterns and specific properties of the gradient vector
fields around each candidate. A classifier is then trained to
distinguish true polyps from false positive structures based
on a set of annotated polyps. The segmental location of the

finding can be automatically detected by counting the folds
from the rectum and by distance from it. Also the size of
each candidate is estimated by linear regression from a sub-
set of the features. Figure 11 shows typical examples of a
sessile and a flat polyp. Figure 12 illustrates some exam-
ples of false-positive structures commonly misinterpreted as
polyps: folds, tagged stool residuals and the ileocecal valve.

4.2.2 Characterization of lesions in Breast MRI
Contrast enhanced MR sequences are a powerful diagnos-
tic tool for the detection of lesions in breast. Typically,
the diagnosis begins by identifying suspicious regions of en-
hancement in post contrast acquisitions with respect to a
pre-contrast one. Automating this process is therefore re-
quired for a computer-aided system.

Segmentation of vascular structures Because lesions usu-
ally contain a high number of newly created vessels,
perfusion of a contrast agent makes the lesions ap-
pear brighter than the background. Automatically
segmenting and measuring the lesions saves the radi-
ologist time and makes these measurements more con-
sistent across readers.

One set of features extracted from breast MR images
aims at distinguishing locations on vascular structures
in order to help the segmentation and characterization
processes. These features are based on the local dif-
ferential structure of the image. Figure 13 illustrates
the result of separating the enhancing structures on
vessels from ones outside vessels (potential tumors).

Shape characterization and pharmacokinetic analysis
In breast MR, lesions are described both in terms of
their morphology and their pattern of enhancement.
Lesions are classified into focus of enhancement, reg-
ular or irregular mass or non-mass-like enhancement.
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Figure 11: A typical sessile polyp (top row) and a typical
flat polyp (bottom row). In addition to their shape, polyps
are characterized by their internal texture, which is usually
homogeneous non-fatty soft tissue (muscle-like), illustrated
here by the red colored area under the transparent rendering
of the colonic tissue.

Masses are described by their shape which can be round,
oval, lobulated or irregular, their margin, which can
be smooth, irregular or spiculated and their internal
enhancement, which can be homogeneous or hetero-
geneous. Non-mass-like enhancement are categorized
as focal, linear, ductal, segmental, regional, or diffuse,
while their pattern of enhancement can be described as
homogeneous, heterogeneous, stippled, clumped, patchy,
dendritic, reticular, symmetric or asymmetric.

Each of these image characteristics can be translated
into one or more imaging features, extracted from the
local structure of the image and from texture analysis.
Machine learning methods can then be applied to map
these features into two or more classes of lesions.

One additional dimension of the study of breast MR
imaging is the analysis of the way different areas of
the anatomy absorb and release contrast agents. This
is called pharmacokinetic analysis and its goal is to
provide a framework where the kinetics of the contrast
agent within the tissue of interest can be quantitatively
described and compared across data sets from one or
more patients and/or MR systems. Malignant tissues
differ from benign tissues in how contrast agents flow in
and leak out. Pharmacokinetic analysis aims to quan-
tify the wash-in and wash-out of the contrast agent to-
wards differentiating malignant and benign lesions [8]
(Figure 14).

Both the morphological and temporal analysis of le-
sions are affected by artifacts due to patient motion
during the acquisition of the temporal sequence. Mo-
tion artifacts may introduce misinterpretations of the
lesion intensity over time, as well as changes in the

Figure 12: Two types of frequent false positives in the de-
tection of polyps: folds and tagged stool (left) and the ileo-
cecal valve (right). The small tagged stool on the left and
the ileocecal valve roughly illustrate the range of sizes that
are targeted for detection.

lesion morphology [5]. Motion correction can reduce
false categorization of lesion kinetics and provide bet-
ter lesion delineation (Figure 15).

4.3 Non-standard learning paradigms
From a machine learning perspective, early stage detection
of cancer from medical images can be abstracted as a simple
supervised binary classification problem. One could poten-
tially use standard off-the-shelf classifiers like logistic regres-
sion, support vector machine, neural network, etc. However
most of the standard off-the-shelf supervised learning algo-
rithms are generally developed for an ideal world. They of-
ten make strong assumptions which make them less suitable
to be applied directly to real world messy data. For example
training points are often noisily labeled, training samples are
not independent and identically distributed, it is difficult or
impossible to acquire the objective ground truth, the desired
performance metric may be quite different etc. For these
reasons most of the basic assumptions in developing classi-
fication algorithms have to be questioned. Suitable modifi-
cations must be introducced to model these deviations from
the ideal scenario which can give a significant improvement
in performance over off-the-shelf standard classification al-
gorithms to account for more realistic conditions. In this
section we will describe some of the assumptions that can
possibly break down and how we can re-engineer some stan-
dard learning algorithms to suit our needs. Specifically we
will discuss three non-standard learning paradigms which
can deal with noisy, subjective, and partial label informa-
tion.

4.3.1 Multiple instance learning
In a conventional supervised learning scenario it is always
assumed that the label is provided for every instance. How-
ever for many practical applications labels are available at
a much higher granularity and are not available for every
instance. For example in medical imaging applications the
radiologist who provides us the ground truth just marks the
location of the lesion. The lesions are often irregular in
shape and are of different sizes. The computer algorithm
designed to detect these lesions produces a lot of training
examples which are spatially close to each other (see Fig-
ure 16 for an illustration). All these examples point to the
same ground truth. A single instance classifier considers all
these examples as positive. In practice it often happens that
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Figure 13: Local differential features are computed that
allow distinguishing locations of enhancement on vascular
structures from other structures such as tumors.

there will be a lot of negatives which mistakenly are labeled
as positives.

In the multiple instance learning (MIL) framework the train-
ing set consists of bags. A bag contains many instances. All
the instances in a bag share the same bag-level label. A
bag is labeled positive if it contains at-least one positive
instance. A negative bag means that all instances in the
bag are negative. The goal is to learn a classification func-
tion that can predict the labels of unseen instances and/or
bags. Figure 16 illustrates that MIL can yield very different
classifiers compared to conventional single instance learning.
The single instance classifier on the left is trying to reject
as many negative candidates as possible and detect as many
positives as possible. The MIL classifier on the right tries
to detect at-least one candidate in a positive bag and reject
as many negative candidates as possible.

There is another important reason why MIL is a natural
framework for medical imagining applications. The candi-
date generation algorithm produces a lot of spatially close
candidates. Even if one of these is highlighted to the ra-
diologist and other adjacent or overlapping candidates are
missed, the underlying lesion would still have been detected.
Hence while evaluating the performance of such systems we
use the bag level sensitivity, that is, a classifier is successful
in detecting a lesion if at least one of the candidates point-
ing to it is predicted as a lesion. MIL lends itself to model
our desired accuracy measure during training itself.

We incorporate the definition of a positive bag to modify the
link function used in logistic regression [12; 7]. Standard lo-
gistic regression uses a sigmoid link function to model the
probability of the positive class. For MIL since we have the
notion of a positive bag the probability that a bag contains
at-least one positive instance is one minus the probability
that all of them are negative. The proposed algorithm se-
lects features and designs the classifier jointly. One interest-

Figure 14: Pharmacokinetic analysis aims to quantify the
wash-in and wash-out of the contrast agent towards differ-
entiating malignant and benign lesions.
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Figure 15: There are 2D and 3D motions resulting in promi-
nent ridge-and-valley artifact, best seen on the uncorrected
images. Uncorrected and 2D-corrected images each show
different areas of artifactual washout, in part related to 3D
motion. 3D-registered images correctly show plateau and
progressive enhancement without washout.

ing empirical outcome was that the multiple instance model
was able to select many fewer features; almost half the num-
ber of features selected by the single instance approach.

4.3.2 Multiple expert learning
In many medical imaging applications it is actually quite dif-
ficult to obtain the ground truth. The actual gold standard
(whether it is cancer or not) can be obtained from biop-
sies, but since it is an expensive and an invasive process,
often data mining systems are built from labels assigned by
multiple radiologists who identify the locations of malignant
lesions. Each radiologist visually examines the medical im-
ages and provides a subjective (possibly noisy) version of the
gold standard. The radiologists come from a diverse pool in-
cluding luminaries, experts, residents, and novices and very
often there is lot of disagreement among the annotations.
For many tasks the labels provided by the annotators are
inherently subjective and there will be substantial variation
among different annotators.

With the advent of crowdsourcing services like Amazons Me-
chanical Turk it is quite inexpensive to acquire labels from a
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Figure 16: Illustration of multiple instance learning (left) A
mammogram of the right breast illustrating the concept of
multiple candidates pointing to the same ground truth. The
red ellipse is the lesion as marked by the radiologist (ground
truth). The blue contours are the candidates generated by
our algorithm. (right) Illustration of single-instance learn-
ing (top) and multiple instance learning (bottom) for a toy
problem. The red circles are negative candidates. The blue
shapes are positives. There are three positive bags (square,
triangle, and diamond).

large number of annotators (possibly thousands) in a short
time. In situations like these, the performance of different
annotators can vary widely (some may even be malicious),
and without the actual gold standard, it may not be possi-
ble to evaluate the annotators. In [13] we proposed a prob-
abilistic approach for supervised learning which addresses
the following three issues simultaneously: (1) how to adapt
conventional supervised learning algorithms when we have
multiple annotators providing subjective labels but no ob-
jective gold standard?; (2) how to evaluate systems when
we do not have an absolute gold-standard?; (3) how to es-
timate how reliable/trustworthy each annotator is ?. The
last problem is particularly relevant when there are a large
number of annotators.

The commonly used majority voting scheme uses the labels
on which the majority agree as an estimate of the actual gold
standard. We proposed a Bayesian approach that jointly
learns the classifier, the annotator accuracy, and the un-
known true label. The final estimation is performed by an
Expectation Maximization algorithm that iteratively estab-
lishes a particular gold standard, measures the performance
of the experts given that gold standard, and refines the gold
standard based on the performance measures. Experimental
results indicate that the proposed method is superior to the
commonly used majority voting baseline. A novel feature
is that the proposed algorithm learns the classifier and the
ground truth jointly in a way the classifier is allowed to influ-
ence the ground truth. The method was successfully applied
to a model for prediction of malignancy for breast tumors in
MR with subjective assessments from multiple radiologists
in the absence of biopsy results.

4.3.3 Multiple task learning
We are often faced with a shortage of training data for learn-

ing classifiers for a task. However we may have additional
data for closely related, albeit non-identical tasks. For ex-
ample our data set includes images from CT scanners with
two different reconstruction kernels. While training the clas-
sifier we could ignore this information and pool all the data
together. However, there are some systematic differences
that make the feature distributions slightly different. We
could also train a separate classifier for each kernel, but a
large part of our data set is from one particular kernel and
we have a smaller data set for the other. Alternatively we
could use the framework of multi-task learning [12] that tries
to estimate models for several classification tasks in a joint
manner. Multi-task learning can compensate for small sam-
ple size by using additional samples from related tasks, and
exchanging statistical information between tasks.

5. TRENDS
We discussed the increased research activities in medical im-
age mining in the last decade and gave examples of use
cases and the methods employed. We conclude by identi-
fying some trends that will shape the research directions of
this domain.

1. Personalization Advances in science and medicine are
clearly pointing in the direction of personalization. Med-
ical imaging plays important roles in this transforma-
tion. Already there are many functional and molecular
imaging modalities and computing techniques that are
opening doors to new ways of personalized diagnosis,
treatment and care [6].

2. Specialization Highly specialized, high performance, and
value-added image mining software systems will con-
tinue to grow, together with the growth of new imag-
ing modalities and hardware, and new diagnosis and
surgical techniques in cardiology, oncology and neurol-
ogy. Domain knowledge is the key to success in this
direction.

3. Generalization On the other hand, advances in algo-
rithms in the domain of general machine learning, data
mining, and statistics will facilitate the development
of more powerful and more general tools that can deal
with different imaging modalities in a unified way. Dis-
ruptive innovation here could sweep away old genera-
tions of specialized solutions in multiple domains, or at
least significantly transform their landscape. The data
mining community should aspire to facilitate such rev-
olutionary changes in the medical imaging domain.

4. Cost reduction The cost pressure on the healthcare
system will continue to rise. As a result, productivity
gain will be a near- to mid-term priority, and do more
with what you have will be the driver for image mining
algorithm research, which should focus on extracting
more clinical value out of medical images.
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