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ABSTRACT
With the wide use of deep neural networks (DNN), model
interpretability has become a critical concern, since explain-
able decisions are preferred in high-stake scenarios. Current
interpretation techniques mainly focus on the feature at-
tribution perspective, which are limited in indicating why
and how particular explanations are related to the predic-
tion. To this end, an intriguing class of explanations, named
counterfactuals, has been developed to further explore the
“what-if” circumstances for interpretation, and enables the
reasoning capability on black-box models. However, gener-
ating counterfactuals for raw data instances (i.e., text and
image) is still in the early stage due to its challenges on
high data dimensionality and unsemantic raw features. In
this paper, we design a framework to generate counterfac-
tuals specifically for raw data instances with the proposed
Attribute-Informed Perturbation (AIP). By utilizing gen-
erative models conditioned with different attributes, coun-
terfactuals with desired labels can be obtained effectively
and efficiently. Instead of directly modifying instances in the
data space, we iteratively optimize the constructed attribute-
informed latent space, where features are more robust and
semantic. Experimental results on real-world texts and im-
ages demonstrate the effectiveness, sample quality as well as
efficiency of our designed framework, and show the superior-
ity over other alternatives. Besides, we also introduce some
practical applications based on our framework, indicating
its potential beyond the model interpretability aspect.

1. INTRODUCTION
The past decade has witnessed the success of deep neural
networks (DNN) in many application domains [31]. De-
spite the superior performance, DNN models have been in-
creasingly criticized due to its black-box nature [6]. Inter-
pretable machine learning techniques [7] are thus becoming
significantly vital, especially in those high-stake scenarios,
such as medical diagnosis. To effectively interpret black-box
DNNs, most approaches investigate the feature attributions
between input instances and output predictions through cor-
relation analysis, so that humans can have a sense of which
part of the instance contributes most to the model decision.
A typical example is the heatmaps employed for image clas-
sification [36], where saliency scores are capable of indicating
the feature importance for one prediction label.

However, existing correlation-based explanations are neither

discriminative nor counterfactual [29], since they are not
able to help understand why and how particular explana-
tions are relevant to model decisions. Thus, to further ex-
plore the decision boundaries of black-box DNN, counterfac-
tuals have gradually come to the attention of researchers, as
an emerging technique for model interpretability. Counter-
factuals are essentially some synthetic samples within data
distribution, which can flip the prediction. With counter-
factuals, humans can understand how input changes affect
the model and conduct reasoning under “what-if” circum-
stances. Take a loan applicant who got rejection for in-
stance. Correlation-based explanations may simply indicate
those most contributed features (e.g., income and credit) for
rejection, while counterfactuals are capable of showing how
the application could be accepted with certain changes (e.g.,
increase the monthly income from $5, 000 to $7, 000).

Recent work have made some initial attempts on conduct-
ing counterfactual analysis. The first line of research [19; 3]
employed the prototype and criticism samples in the train-
ing set as the raw ingredients for counterfactual analysis,
though those selected samples are not counterfactuals in na-
ture. Some other work [12; 1] utilized feature replacement
techniques to create hypothetical instances as counterfac-
tuals, where a query instance and a distractor instance are
typically needed for counterfactual generation. Besides, con-
trastive intervention [5; 43] on the query instance is another
way to generate counterfactuals. By reasonably perturbing
input features, counterfactuals can be obtained in the form
of modified data samples.

Despite the existing efforts, generating valid counterfactuals
for raw data instances is still challenging due to the fol-
lowing reasons. First, effective counterfactuals for certain
label are not guaranteed to be existed in training set, so the
selected prototypes and criticisms are not always sufficient
for counterfactual analysis. The related sample selection al-
gorithms are highly possible to select some “unexpected”
instances due to data constraints [19], which would largely
limit the reasoning on model behaviors. Second, efficient
feature replacement for raw data instances could be very
hard and time-consuming [12]. Also, relevant distractor in-
stances for replacement may not be available in particular
scenarios considering privacy and security issues, such as
loan applications. Third, modifying query samples with in-
tervention can simply work on a limited types of data, such
as tabular data [43] and naive image data [5]. For general
raw data like real-world texts or images, intervention opera-
tion in data space can be intractable, which makes it difficult
to be used in practice.



To handle the aforementioned challenges, the high-dimension
data space and unsemantic raw features are the two ob-
stacles ahead. In this paper, we design a framework to
generate counterfactuals specifically for raw data instances
with the proposed Attribute-Informed Perturbation (AIP)
method. By utilizing the power of generative models, we
can obtain useful hypothetical instances within the data dis-
tribution for counterfactual analysis. Essentially, our pro-
posed AIP can guide a well-trained generative model to
generate valid counterfactuals by updating representations
in the attribute-informed latent space, which is a concate-
nated coding space for both raw features and semantic at-
tributes. Due to the different data formats, raw features
and attributes are typically encoded in different ways to con-
struct such attribute-informed space. Compared with the in-
put space, attribute-informed latent space has two merits for
counterfactual generation: (1) raw features are encoded as
low-dimension ones which are more robust and efficient for
generation; (2) data attributes are modeled as joint latent
features which are more semantic for conditional generation.
As for the construction of attribute-informed latent space,
we employ two losses to conduct the training of generative
models, where the reconstruction loss is used to guarantee
the quality of raw feature embedding and the discrimina-
tion loss is used to ensure the correct attribute embedding.
Through the adaptive gradient-based optimization, AIP can
iteratively derive valid counterfactuals which are able to flip
the prediction. The main contributions of this paper are
summarized as follows:

• We design a general framework to derive counterfactuals
for raw data instances by employing generative models;

• We develop AIP to iteratively update the parameters of
generative models in an attribute-informed latent space;

• We evaluate the designed framework with AIP on several
real-world datasets including raw texts and images, and
demonstrate the superiority over other alternatives.

2. PRELIMINARIES
In this section, we briefly introduce related contexts to our
problem, as well as some basics of the employed techniques.

2.1 Counterfactual Explanation
Counterfactual explanation is a natural extension under the
framework of example-based reasoning [34], where particu-
lar data samples are provided to promote the understandings
on model behaviors. Nevertheless, counterfactuals are not
common examples, since they are typically generated under
the “what-if” circumstances which may not necessarily ex-
ist. According to the theory proposed by J. Pearl [30], three
distinct levels of cognitive ability are needed to fully master
the behaviors of a particular model, i.e., seeing, doing and
imagining from the easiest to the hardest. In fact, counter-
factual explanation is just raised to meet the imagining-level
cognition for model interpretation.

Within the contexts of this paper, we only discuss counter-
factuals under the assumption of “closest possible world” [42],
where desired outcomes can be obtained through the small-
est changes to the world. To be specific and simple with-
out loss of generality, consider a binary classification model
fθ : Rd → {0, 1}, where 0 and 1 respectively indicate the
undesired and desired output. The model input x ∈ Rd is

further assumed to be sampled from data distribution P(x).
Then, given a query instance x0 with the undesired model
output (i.e., fθ(x0) = 0), the corresponding counterfactual
x∗ can be mathematically represented as:

x∗ = arg min
x|P(x)>η

l(x,x0) s.t. fθ(x∗) = 1, (1)

where l : Rd × Rd → R+ is a distance measure in the input
space, and η > 0 denotes the threshold which quantifies
how likely the sample x is under the distribution P(x). The
obtained counterfactual x∗ is regarded to be valid if it can
flip the target classifier fθ to the desired prediction.

Although finding counterfactuals is somewhat similar to gen-
erating adversarial examples (in terms that both tasks aim
to flip the model decision by minimally perturbing the input
instance), they are essentially different in nature. Following
the previous settings, the adversarial sample xadv for model
fθ, with query instance x0, can be generally indicated by:

xadv = arg min
x=x0+δ

‖δ‖p s.t. fθ(xadv) 6= fθ(x0), (2)

where δ denotes the adversarial perturbation on the query,
‖ · ‖ represents the norm operation and p ∈ {∞, 1, 2, · · · }.
Comparing with Eq. 1, we note that counterfactual exam-
ple has two significant differences from adversarial sample.
First, counterfactual generation process is subject to the
original data distribution, while adversarial samples are not
constrained by the distribution. This difference brings about
the fact that counterfactuals are all in-distribution sam-
ples, but adversarial examples are mostly out-of-distribution
(OOD) samples. Second, counterfactual changes on the
query need to be human-perceptible, while adversarial per-
turbations are usually inconspicuous [37]. Therefore, the
key problem of counterfactual explanation actually lies in
how to generate such in-distribution sample, with human-
perceptible changes on the query, to flip the model decision
as desired.

2.2 Generative Modeling
Generative modeling is a typical task under the paradigm of
unsupervised learning. Different from discriminative ones,
which involves discriminating input samples across classes,
generative modeling aims to summarize the data distribu-
tion of input variables and further create new samples that
plausibly fit into that distribution [28]. In practice, a well-
trained generative model is capable of generating new exam-
ples that are not only reasonable, but also indistinguishable
from real examples in the problem domain. Conventional
examples of generative modeling include Latent Dirichlet
Allocation (LDA) and Gaussian Mixture Model (GMM).

As emerging families of generative modeling, Generative Ad-
versarial Network (GAN) [10] and Variational Auto-Encoder
(VAE) [21] have been attracting lots of attentions due to
their exceptional performance in a myriad of applications,
especially for the task on image and text generation [41; 17].
By taking full advantage of their power on raw data with
high dimensionality, we are able to better investigate how
those data samples were created in the first place, which po-
tentially benefits the generation of certain hypothetical ex-
ample. To this end, we specifically employ some advanced
generative models (i.e., GAN and VAE) to study the coun-
terfactual explanation for black-box DNN on raw data in-
stances, providing effective generative counterfactuals for
better model understanding.
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Figure 1: Designed framework for counterfactual generation.

3. COUNTERFACTUAL GENERATION
In this section, we first introduce the designed generative
counterfactual framework for raw data instances. Then, we
present how to specifically construct the attribute-informed
latent space with generative models. Finally, we show the
details of our proposed AIP method.

3.1 Generative Counterfactual Framework
We design a framework to create counterfactual samples
for raw data instances, as illustrated by Fig. 1. To effec-
tively handle the high dimensionality and unsemantic fea-
tures, we utilize the generative modeling techniques to aid
the counterfactual generation process. Consider a target
DNN Fφ : Rd → {1, · · · , C}, which is a black-box model for
counterfactual analysis, where Rd is the input data space
and {1, · · · , C} denotes the model prediction space with C
different outputs. Given a query instance x0, Fφ(x0) = y0

outputs a one-hot vector. To effectively generate a valid
counterfactual sample x∗ ∈ Rd that can flip the Fφ de-
cision to y∗ ∈ {1, · · · , C} as desired, a generative model
is trained to achieve this in the framework. The applied
generative modeling plays two important roles in the coun-
terfactual generation process: (1) guarantee that all cre-
ated instances are in-distribution samples, since it can be
regarded as a stochastic procedure that generates samples
x ∈ Rd under the particular data distribution P(x); (2)
assume that underlying latent variables can be mapped to
the data space under certain circumstances, which ensures
the sufficient feasibility for hypothetical examples. Thus, a
well-trained generative model is the basis for high-quality
counterfactuals within the designed framework.

The employed generative model specifically serves two sub-
tasks for counterfactual generation, i.e., data encoding and
decoding. For raw data instances like images, the input
space Rd could be extremely large, which makes it diffi-
cult and inefficient to directly create counterfactuals for the
query. In our designed framework, data encoding is con-
ducted to map the input data space to a low-dimension
attribute-informed latent space, which is formulated as a
joint embedding space for both raw features and data at-
tributes. In this way, each data sample x can be effectively
encoded through the function Gencψ : Rd → Rk ⊕ Rt, where

Rk is the latent space for raw feature embeddings, Rt in-
dicates the data attribute space, and ⊕ represents a con-
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Figure 2: General illustration of the attribute-informed la-
tent space in generative models.

catenation operator. Reversely, the mapping for decoding
is from the attribute-informed latent space to the original
data space. The decoder function can be similarly indicated
by Gdecω : Rk × Rt → Rd. Although Gencψ and Gdecω typi-
cally have two different focuses, they are jointly trained as
a whole generative model in an end-to-end manner. The is-
sues about how to derive Gencψ and Gdecω will be particularly
discussed in Sec. 3.2.

To finally obtain the counterfactual x∗ for model Fφ with
query x0, we further need to modify the attribute-informed
latent space of the deployed generative model. Specifically,
we use the proposed AIP to update the attribute-informed
latent vector of x0, according to the counterfactual loss cal-
culated. Assuming Gencψ (x0) = z0 ⊕ a0 (z0 ∈ Rk,a0 ∈ Rt),
AIP method can jointly update z0 and a0, so as to min-
imize the corresponding loss counter-factually. The over-
all counterfactual loss consists of two parts, i.e., predic-
tion loss and perturbation loss. Prediction loss is set to
ensure the flip of model decisions, and perturbation loss
is involved to guarantee the “closest possible” changes on
the query, which are both indispensable for counterfactual
generation. For the prediction loss, we simply follow the
common cross-entropy term, expressed as Ld(Fφ(x),y∗) =
−y∗ log(Fφ(x)) − (1 − y∗) log(1 − Fφ(x)). For the pertur-
bation loss, we employ two l2 norms respectively on Rk and
Rt, indicated by Lb(z,a, z0,a0) = ‖z − z0‖2 + ‖a − a0‖2
(z ∈ Rk,a ∈ Rt), to restrain the query changes, which can
also be regarded as a regularization term. Further, the over-
all counterfactual loss can thus be represented as follows:

Lc(z,a, z0,a0,y
∗) =Ld

(
Fφ(Gdecω (z,a)),y∗

)
+ αLb(z,a, z0,a0),

(3)

where α is a balance coefficient between the two loss terms.
With the proposed AIP method, the designed framework
can generate the valid counterfactual example x∗ with the
aid of optimized z∗,a∗ through the decoder function (i.e.,
x∗ = Gdecω (z∗,a∗)). The details of the proposed AIP method
will be introduced in Sec. 3.3.

3.2 Attribute-Informed Latent Space
Constructing an appropriate attribute-informed latent space
is the key part for generative modeling in our designed frame-
work, which has direct influences on the quality of generated
counterfactuals. To achieve this, we need to well train a gen-



erative model, better capturing the raw data features as well
as relevant data attributes, where embedded features can
bring about more robust bases for counterfactual analysis,
and incorporated attributes are able to provide more seman-
tics for conditional generation. Here, the data attributes
mainly indicate those extra information from humans along
with raw instances, such as annotations or labels, which can
usually be represented as one-hot vectors.

In practice, it is common that different generative models are
employed for different tasks or data. Since different mod-
els typically involve disparate architectures, their training
schemes can totally differ from each other. Take the GAN
and VAE for example, where GAN is usually trained to ob-
tain an equilibrium between a generator and a discriminator
function, while VAE is typically trained to maximize a vari-
ational lower bound of the data log-likelihood. Therefore, to
better introduce how to specifically construct the attribute-
informed latent space with generative models, we present a
general illustration shown by Fig. 2, although it may not be
fully representative for all kinds of models.

We generally introduce the data modeling process with an
encoder-decoder structure, which corresponds to the data
encoding and decoding in our designed framework. Essen-
tially, the attribute-informed latent space can be regarded
as an extended code space of auto-encoders, where attribute
information is properly incorporated into the representa-
tion beyond the raw feature inputs. By concatenating at-
tribute vector a to raw feature embedding z, the decoder
function aims to achieve the conditional generation based
on a. To ensure the attribute consistency between original
sample x and generated sample x̂, discriminator Dξ is par-
ticularly employed, which is trained separately and used to
classify the attributes of x̂. To effectively train such gen-
erative model, two basic loss terms are required, which are
the discrimination loss and reconstruction loss. The overall
training can be indicated by:

min
ψ,ω

E
x∼P(x)
a∼P(a)

t∑
i=1

−ai logDi
ξ(x̂)−(1−ai) log

(
1−Di

ξ(x̂)
)

+ E
x∼P(x)

‖x− x̂‖2,
(4)

where ai denotes the i-th attribute in a, and Di
ξ indicates

the prediction of Dξ on the i-th attribute. After sufficient
training, Gencψ and Gdecω can be effectively obtained, and
the attribute-informed latent space can be constructed with
the aid of Gencψ . For specific tasks and architectures, the
generative modeling process could be further enhanced with
other loss terms, such as the adversarial losses employed in
[16] for better visual quality.

3.3 Attribute-Informed Perturbation
With the obtained Gencψ and Gdecω for generative modeling,
we then introduce the proposed AIP method to finally de-
rive the counterfactual for target DNN Fφ with the query
x0. To guarantee the quality of the generated counterfac-
tuals, AIP needs to find the sample that can minimize the
counterfactual loss indicated by Eq. 3. Under the “closest
possible world” assumption, the corresponding counterfac-
tual sample can be denoted as:

x∗ = Gdecω

(
arg min

z∈Rk, a∈Rt

Lc(z,a, z0,a0,y
∗)

)
. (5)

Algorithm 1: Attribute-Informed Perturbation (AIP)

Input: Fφ, Gencψ , Gdecω , x0, y∗, µ, γ, α, β, nmax

Output: Counterfactual sample x∗

1 Initialize µ, γ, α, β ;
2 Initialize n = 0, x = x0 ;
3 Construct the latent space with z⊕ a← Gencψ (x) ;

4 while Fφ(Gdecω (z,a)) 6= y∗ or n ≤ nmax do
5 Update z and a according to Eq. 6 ;
6 Update step sizes with µ← βµ and γ ← βγ ;
7 n← n+ 1;

8 Reconstruct the sample with x∗ ← Gdecω (z,a) ;
9 if Fφ(x∗) == y∗ then

10 Return x∗ as the counterfactual for Fφ with x0;
11 else
12 Return None – No valid counterfactual exists;

To effectively solve Eq. 5, the proposed AIP method utilizes
an iterative gradient-based optimization algorithm with dy-
namic step sizes (controlled by a decaying factor β), which
helps the iteration process converge faster. In each iteration,
the updated z and a can be derived as follows:

z(n+1) = z(n) − µ(n)∇zLc
(
z(n),a(n), z0, a0, y∗

)
a(n+1) = a(n) − γ(n)∇aLc

(
z(n),a(n), z0, a0, y∗

) , (6)

where n indicates the iteration index, µ and γ respectively
denotes the step sizes of updates on z and a. Specifically, the
proposed AIP method can be summarized in Algorithm 1.
It is important to note that AIP only works on the optimiza-
tion of z,a, and does not involve the parameter update on
Fφ, Gencψ , Gdecω . Thus, the proposed AIP method should be
less time-consuming and easily deployed for counterfactual
generation task, compared with those generative frameworks
which need extra model training [35; 38].

4. EXPERIMENTS
In this section, we evaluate the designed counterfactual gen-
eration framework with the proposed AIP on several real-
world datasets, both quantitatively and qualitatively. Over-
all, we conduct two sets of experiments respectively on text
and image counterfactual generation, by utilizing different
data modeling techniques. With conducted experiments, we
aim to answer the following four research questions:

• How effective is the designed framework in generating
counterfactuals with AIP?

• How is the quality of created counterfactuals from our
designed framework aided by AIP?

• How efficient is the counterfactual generation under the
designed framework with AIP?

• Can we benefit other practical tasks with the counterfac-
tuals generated from our design framework with AIP?

4.1 Experimental Settings

4.1.1 Real-World Datasets.
Throughout the whole experiments, we employ three real-
world datasets to evaluate the performance of the designed



Table 1: Dataset statistics in experiments.

Datasets #Instance #Attribute Type Domain

Yelp 455, 000 1 Texts Sentiment
Amazon 558, 000 1 Texts Sentiment
CelebA 202, 599 13 Images Human Face

framework with AIP, including both raw texts and images.
The relevant data attributes depend on the particular tasks,
which are collected either from labels or annotations. The
statistics of the involved datasets are shown in Table 1.

• Yelp User Review Dataset1 [2]: This dataset consists
of user reviews from the Yelp associated with relevant
rating scores. We involve a tailored and modified version
of this data for our experiments on text counterfactuals.
Specifically, we consider the reviews with ratings higher
than three as positive samples and regard the others as
negative ones, and we further use these sentiment labels as
the relevant attribute for data modeling. The vocabulary
of our involved Yelp data contains more than 9, 000 words,
and the average review length is around 9 words.

• Amazon Product Review Dataset2 [15]: This dataset
is also involved as a raw textual dataset for our experi-
ments. Similar to the Yelp data, we modify the original
rating information of reviews into the sentiment categories
(i.e., positive and negative), and further model these la-
bels as an sentiment attribute of the raw textual reviews.
Amazon dataset has more than 50, 000 words in vocabu-
lary, and the average length is around 15.

• CelebFaces Attributes (CelebA) Dataset3 [24]: This
is a large-scale face attributes dataset, containing tons of
raw face images with human annotations. We employ
this dataset for our experiments on image counterfactual
generation, and select 13 representative face attributes
(out of 40) for data modeling along with raw face images.
The involved thirteen attributes include: Male, Young,
Blond Hair, Pale Skin, Bangs, Mustache and etc.

4.1.2 Target Model for Interpretation.
Since we mainly discuss the counterfactuals of raw data in-
stances, DNN is a better choice as our target model. For the
target DNN Fφ in our experiments, we employ some regular
structures for the corresponding tasks. Particularly, for the
text sentiment classification, we use a common convolutional
architecture in [20] to pre-train a DNN classifier for further
counterfactual analysis. For the image attribute classifica-
tion task, similarly, we utilize a simple convolutional net-
work [13] to prepare a target classifier, where the model is
trained with one of those attributes as the label. During the
evaluations on counterfactual generation, target DNNs are
fixed without further training.

4.1.3 Employed Generative Modeling Techniques.
In our experiments, different data modeling techniques are
employed for different types of data. In particular, we use

1https://www.yelp.com/dataset
2http://jmcauley.ucsd.edu/data/amazon/index_2014.
html
3http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

different generative models to construct the corresponding
attribute-informed latent space, regarding to text and im-
age. For textual reviews (Yelp, Amazon), we utilize the
modeling techniques introduced in [17], and build a transformer-
based VAE to effectively formulate the relevant attribute-
informed latent space. For face images (CelebA), we mainly
follow the modeling method of AttGAN [16], where more
complicated training schemes are employed, compared with
the general one shown in Sec. 3.2, for better visual quality
of the generated images. Both of the employed generative
models should be well-trained on the corresponding datasets
before the counterfactual generation process, so as to guar-
antee the high quality of generated counterfactuals.

4.1.4 Alternative Methods and Baselines.
To effectively evaluate the performance of the designed frame-
work with AIP, we incorporate following alternative meth-
ods and baselines for comparison.

• TextBugger [22]: This is a general method for adver-
sarial text generation, which is built based on the word
attribution and bug selection. The created text samples
can effectively flip the prediction of the target classifier.
We employ this method as a baseline to specifically com-
pare with our generated text counterfactuals.

• DeepWordBug [9]: This is another method focusing
on the adversarial text generation, where a token scoring
strategy is utilized to guide the character-level adversarial
perturbation. This method is employed as a baseline for
text counterfactuals as well.

• FGSM [11]: Fast gradient sign method is a common way
to generate image adversarial samples, by using the gra-
dients of the loss with respect to the input. The sam-
ple created by this method can effectively maximize the
loss, so as to flip the original prediction. We employ this
method as a baseline specifically for our generated image
counterfactuals.

• Counter Vis [12]: This is a recent method in generat-
ing image counterfactuals, where particular image regions
are replaced to flip the model decision. We employ this
method as an alternative method for image counterfactual
generation.

• CADEX [27]: This is a state-of-the-art method for coun-
terfactual generation, where the gradient-based method is
directly applied to modify the input space of query. This
method is originally proposed for tabular data, and we
modify it simply as an alternative for image counterfac-
tuals, due to the particularity of texts.

• xGEMs [18]: This is a state-of-the-art method for gen-
erating counterfactuals, which also employs the gener-
ative modeling technique for sample generation. This
method only involves the latent space modeling and can-
not achieve the conditional generation with semantic at-
tributes. We employ this method as an important alter-
native for both text and image counterfactuals.

• AIP R: This is the random version of our proposed AIP
method, which updates all parameters in a random way.
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4.2 Text Counterfactual Evaluations
In this part, we evaluate the designed framework with AIP in
generating text counterfactuals, regrading to a convolutional
neural net (CNN) built for sentiment classification. The in-
volved raw texts for target DNN come from the user/product
reviews in Yelp and Amazon datasets, where 90% are used
for training, 5% for development and 5% for testing.

4.2.1 Effectiveness Evaluation.
In order to evaluate the effectiveness for text counterfactu-
als, we employ the metric Flipping Ratio (FR) to measure
the relevant performance, which reflects how likely the gen-
erated text samples would flip the model decision to y∗.
Specifically, FR can be calculated as follows:

FR = |Xf |
/
|Xq| (x0 ∈ Xf if Fφ(x0) = y∗) , (7)

where Xf indicates the set of query samples with which new
flipping instances can be generated by particular methods,
and Xq denotes the set of all testing queries. In our exper-
iments, there are 500 testing queries in total (i.e., |Xq| =
500), which are randomly selected from the test set. Fig. 3
illustrates our experimental results on both Yelp and Ama-
zon datasets. According to the numerical results, we note
that our designed framework with AIP can work well on
both datasets, and has competitive performance among all
other alternatives as well as baselines, although TextBugger
achieves the highest FR score with better robustness (i.e.,
the performance variance across different datasets). Besides,
we also observe that AIP R does not effectively work for
generating flipping samples, which indicates that random
optimization in attribute-informed latent space cannot help
for counterfactual sample generation.

4.2.2 Quality Evaluation.
As for the quality assessment of counterfactual samples, we
employ the Latent Perturbation Ratio (LPR) metric to mea-
sure the latent closeness between the generated sample x∗

and original query instance x0. Since high-quality counter-
factual samples typically need to ensure sparse changes in
the robust feature space, thus the smaller the LPR is, the
better the counterfactual we have. To be specific, the LPR
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Figure 5: Efficiency evaluation for text counterfactuals.

Table 2: Case studies on generated text samples.

Counterfactual on Negative sentiment (Yelp)
Query: this is the worst walmart neighborhood market out of any of them

TextBugger: this is the worst wa1mart neighborho0d market out of a ny of them

DeepWordBug: this id the wosrt walmart neighobrhood market out of any of htem

xGEMs: that is good walmart market out of any neighborhood

AIP: this is the best walmart neighborhood market for all of them

Counterfactual on Positive sentiment (Amazon)
Query: this item works just as i thought it would

TextBugger: this item w0rks just as i tho ught it wou1d

DeepWordBug: this item wroks just ae i thought it wolud

xGEMs: this item works out poorly just as i thought disappointed

AIP: this item works bad just as i thought it would not play

can be calculated by:

LPR =
∥∥z∗ − z0

∥∥
0

/
k, (8)

where ‖ · ‖0 indicates the l0 norm operation, z∗ and z0 are
the raw feature embeddings respectively for x∗ and x0. To
make a fair comparison, we use the same encoder function
Gencψ for all generated samples to obtain the corresponding
latent representation vectors. In this set of experiments,
the latent dimension is 256 (i.e., k = 256), and the final
LPR value for a particular method is recorded with the aver-
age over 500 testing queries. The relevant numerical results
are presented in Fig. 4. From the experiments, it is noted
that xGEMs and the proposed AIP method significantly out-
perform other baselines, indicating that the corresponding
generated samples actually maintain more robust features
regarding to the query. Furthermore, the proposed AIP is
noted to be slightly better than xGEMs, which may partially
result from the conditional generation brought by attribute
vector a. This set of results also validate a fact that ad-
versarial samples typically utilize some artifacts to flip the
model decisions, instead of using some robust features.

4.2.3 Efficiency Evaluation.
To compare the efficiency, we record the time consumption
for each method over 500 testing queries in the generation
phase on the same machine. Specifically, we calculate the
average time cost for one query, and further employ this as
the metric to access the efficiency for particular methods.
Fig. 5 shows the relevant experimental results. Based on
the statistics, it is observed that adversarial related meth-
ods (i.e., TextBugger and DeepWordBug) consume less time
per query on average, compared with the counterfactual gen-
eration methods, which is mainly due to the fact that ad-
versarial methods do not need to conduct encoding compu-
tations before sample generation. As for our proposed AIP
method, the time efficiency is roughly the same as the alter-
native xGEMs, but it is significantly better than its random
version AIP R which needs more iterations to converge.

4.2.4 Qualitative Case Studies.
Here, we present several representative case studies from
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Figure 6: Evaluations for image counterfactual generation.

Query (female) FGSM CADEX Counter_Vis xGEMs AIP

Figure 7: Qualitative case studies on generated image samples.

different methods, shown in Tab. 2, aiming to provide a
qualitative comparison for generated text samples. Based
on the Tab. 2, we can see that adversarial texts typically
provide limited insights for humans on counterfactual anal-
ysis, since they mainly make use of the model artifacts to
flip the prediction. Nevertheless, with the samples generated
by xGEMs and AIP, we can easily observe some sentiment
variation regarding to the query instance, which sheds light
on model behaviors and facilitates further human reasoning
on black-box models. Besides, compared with xGEMs, the
proposed AIP method usually can generate more sensible
counterfactuals with the aid of attribute conditions.

4.3 Image Counterfactual Evaluations
In this part, we specifically evaluate the designed frame-
work with AIP on image counterfactual generation. Instead
of simply considering one attribute for conditional gener-
ation in texts, we take multiple attributes into account for
image counterfactuals. In this set of experiments, our target
DNN follows the common CNN architecture and is trained
as a gender classifier, which can classify an input image as
Male or Female. All involved raw images for target DNN
come from the CelebA dataset, and we use 90% data for
training, 5% for development, 5% for testing. The relevant
quantitative results are all illustrated by Fig. 6.

4.3.1 Effectiveness Evaluation.
For the effectiveness assessment, we still use the FR met-
ric indicated by Eq. 7. In the experiments, we set |Xq| =
500, and aim to test how many of them can be effectively
flipped with particular methods. Fig. 6(a) illustrates the rel-
evant numerical results, where adversarial method FGSM
performs the best on FR and can flip nearly every test-
ing query. We note that the proposed AIP method ranks
the second, and outperforms other counterfactual genera-

tion methods. Besides, it is also observed that CADEX
and AIP R performs relatively bad for the image counter-
factual task within certain iterations, even though CADEX
is proved to work well for tabular instances [27].

4.3.2 Quality Evaluation.
Similar to text counterfactuals, we employ the LPR metric,
shown as Eq. 8, to measure the quality of the generated im-
age counterfactuals. In experiments, the latent dimension k
constructed by Gencψ is 1, 024 (i.e., k = 1024), and the LPR
for particular method is recorded by calculating the average
over 500 testing queries. Relevant experimental results are
shown by Fig. 6(b). Based on the LPR comparison, we note
that the samples generated by FGSM and CADEX change
a lot in the latent feature space, because both methods di-
rectly rely on the input perturbation for sample generation.
As for the proposed AIP, it achieves the lowest LPR among
all the alternatives and baselines, and it is significantly bet-
ter than its random version AIP R.

4.3.3 Efficiency Evaluation.
We similarly employ the average time consumption per query
to evaluate the efficiency aspect for image counterfactual
generation. Specifically, the average time is obtained over
the 500 testing queries randomly selected from the test set.
Fig. 6(c) shows the relevant experimental results. According
to the statistics and comparison, we note that FGSM is the
most efficient one, and xGEMs consumes the least time on
average among all other counterfactual-based methods. As
for the proposed AIP, a competitive efficiency performance
is observed, and is remarkably superior compared with that
of Counter Vis, CADEX and AIP R.

4.3.4 Qualitative Case Studies.
To facilitate a qualitative comparison among different meth-



ods, we specifically show some case studies, illustrated by
Fig. 7. We select several query instances whose model pre-
dictions are female, and then employ different methods to
generate the corresponding image samples which flip the
model decisions for counterfactual purpose. According to
the results, we note that the samples generated by FGSM
and CADEX do not have salient visual changes regarding to
the query instances, which largely limits the human reason-
ing on model behaviors. Among other alternative methods,
it is observed that the proposed AIP is capable of generat-
ing counterfactuals with better visual quality, which present
much smoother transitions from female to male.

4.4 Influence of Hyper-parameter α

In this part, we show some additional results on the influence
of hyper-parameter α in Eq. 3. Other experimental settings
keep unchanged. The relevant results are shown by Fig. 8.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

FR

α

Yelp Amazon CelebA
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

LP
R

α

Yelp Amazon CelebA

Figure 8: Influence of α on FR and LPR metrics.

Based on the results, we observe that α serves as a knob to
control the effectiveness and sample quality of the designed
framework. To select an appropriate α, we actually need to
strike a balance between FR and LPR, where the larger the
α is, the lower the effectiveness is and the higher the sam-
ple quality is. Different data types may also have different
trade-off curves.

4.5 Applications
In this part, we focus on some practical scenarios which
may benefit from the counterfactual samples generated by
our designed framework. In particular, we show the appli-
cations of the framework respectively on feature interaction
and data augmentation.

4.5.1 Feature Interaction
Understanding the feature interaction could be very impor-
tant in lots of real-world domains. A typical example is the
bias detection task, where humans aim to find out a related
set of features which can significantly influence the correct-
ness or fairness of model decision. Utilizing our designed
framework for counterfactual analysis can partially help this
practical task. By observing the perturbation scale on at-
tribute vector a of the generated counterfactual, humans
can have a sense on which semantic features contribute sig-
nificantly to the flipping of model decision. To illustrate
the point, we show another case result from the designed
framework with AIP in Fig. 9. Here, we train an age clas-
sifier on the CelebA dataset as our target DNN, and aim
to analyze the feature interaction of a query prediction as
“Old”. Based on the attribute perturbations of the gener-
ated sample, we note that the top semantic attributes are
“Male”, “Bushy Eyebrows”, “Black Hair” and “Bangs”, be-
sides the target attribute. This result directly demonstrates

Query 
(Old)

Counterfactual 
(Young)

Figure 9: Feature interactions for the decision change.

Table 3: Model performance with data augmentation.

Dataset CNN [20] VDCNN [4]

Yelp
Initial 82.33% (± 0.61%) 88.79% (± 0.53%)

Augmented 83.16% (± 0.57%) 89.95% (± 0.46%)

Amazon
Initial 81.96% (± 0.52%) 88.55% (± 0.63%)

Augmented 82.41% (± 0.49%) 88.76% (± 0.55%)

Dataset CNN [13] ResNet [14]

CelebA
Initial 87.32% (± 0.22%) 90.96% (± 0.27%)

Augmented 88.85% (± 0.21%) 91.35% (± 0.25%)

the fact that the “Male” attribute has a strong interaction
with the predicted attribute for this particular query, and
the target DNN exists potential gender bias for its age pre-
dictions. Please note that such feature interaction indicates
the attribute sensitivity for flipping model decisions, instead
of the attribution for predictions, which is different from the
existing local interpretation methods (e.g., LIME [32]).

4.5.2 Data Augmentation
Another application of the designed framework is the data
augmentation for model training. By taking full advan-
tage of the generated counterfactual samples as new train-
ing instances, we aim to obtain better DNN models with
higher performance and robustness. Specifically, to test the
improvement, we train several DNN models on relatively
smaller training sets, which are essentially the subsets of
original data. For the sentiment classifiers on Yelp and Ama-
zon, our initial training size is 20, 000, containing 10, 000
positive and 10, 000 negative reviews. The extra counter-
factual training size is 2, 000 whose queries are randomly
selected from the initial training set. For the binary age
classifier on CelebA, we employ a similar setting for train-
ing, where each class includes 10, 000 initial samples, and
2, 000 generated counterfactual samples are further incor-
porated for augmentation. Relevant experimental results
are shown in Tab. 3. Based on the statistics, we note that
the augmented training with counterfactual samples typi-
cally achieves higher classification accuracies with smaller
variances, which can also be observed under some advanced
DNN structures.

5. RELATED WORK
Generating counterfactuals is just one of interpretation meth-
ods for black-box models, which generally belongs to the
family of interpretable machine learning. According to the
particular problems, interpretation methods can be divided
into the following three categories in general.

The first category of methods aims to answer the “What”-
type questions, i.e., what part of the input mostly contribute
to the model prediction. A representative work in this cat-



egory is LIME [32], where authors employ linear models to
approximate the local decision boundary and further for-
mulate it as a sub-modular optimization problem for model
interpretation. The feature importance in LIME is obtained
by observing the prediction changes after perturbing input
samples. Related methods can also be found in Anchors [33]
and SHAP [25]. Another common methodology under this
category is to utilize the model gradient information, where
gradients are regarded as an indicator for perturbation sen-
sitivity. Related methods can be found in GradCAM [36],
Integrated Gradients [40], and SmoothGrad [39].

The second category aims to answer the “Why”-type ques-
tions, i.e., why the input is predicted as label A instead of
B. The methods under this category can be quite different
from the previous ones, since these methods need to consider
two labels simultaneously. There are several different meth-
ods proposed for this problem. For example, the authors
in [5] design a contrastive perturbation method to derive re-
lated positive and negative features of inputs regarding the
concerned label. Besides, a general method based on struc-
tural causal models is proposed in [26] to tackle the problem
in classification and planning scenarios. Also, a generative
framework CDeepEx is designed in [8] to particularly inves-
tigate this problem for images by utilizing GAN.

The third category lies in the “How”-type questions, i.e.,
how to particularly modify the input so as to flip the model
prediction to the preferred label. This problem is a natu-
ral extension of the “Why”-type, and it can somewhat to be
handled by the second category of methods under some sim-
ple scenarios. However, for problems with high-dimension
space, previous categories of methods typically fail due to
the intractable computation for sample modification. Sev-
eral particular methods are raised to solve this issue. For
example, authors in [12] propose a straightforward solution
with image region replacement, which is essentially a feature
replacement process for input with the aid of a distractor. In
work [1], authors novelly use the input itself as the distrac-
tor for feature replacement by utilizing GAN for inpainting.
Besides, generative modeling is another potential way for
this problem, and related methods can be found in [38; 18;
23]. Our work belongs to this branch of methodology.

6. CONCLUSION AND FUTURE WORK
In this paper, we design a framework to generate counterfac-
tual explanation for black-box DNN models specifically with
raw data instances. By taking advantage of the generative
modeling, we effectively construct an attribute-informed la-
tent space for particular data, and further utilize this space
for counterfactual generation. To guarantee the validity of
the generated samples, we propose the AIP method to itera-
tively optimize the specific attribute-informed latent vectors
according to the counterfactual loss term, from which the
counterfactuals can be finally obtained through data recon-
struction. We evaluate the designed framework with AIP
on several real-world datasets, including both texts and im-
ages, and demonstrate its effectiveness, sample quality as
well as efficiency. Future extension of this work may possibly
include the investigation under the “close possible worlds”
assumption, where the goal is to find an optimal set of coun-
terfactuals for a query instead of a single sample. Besides,
employing causal models for counterfactual generation is an-
other promising direction to explore.
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