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ABSTRACT
Every day, an enormous amount of text data is produced.
Sources of text data include news, social media, emails, text
messages, medical reports, scientific publications and fiction.
To keep track of this data, there are categories, key words,
tags or labels that are assigned to each text. Automatically
predicting such labels is the task of multi-label text classifi-
cation. Often however, we are interested in more than just
the pure classification: rather, we would like to understand
which parts of a text belong to the label, which words are im-
portant for the label or which labels occur together. Because
of this, topic models may be used for multi-label classification
as an interpretable model that is flexible and easily extensi-
ble. This survey demonstrates the manifold possibilities and
flexibility of the topic model framework for the complex set-
ting of multi-label text classification by categorizing different
variants of models.

1. INTRODUCTION
Recently, a sub-field of multi-label classification has emerged
which is called multi-label topic modeling. This field brings
together unsupervised topic models based on latent Dirich-
let allocation (LDA [5]) and multi-label classification, a super-
vised task where each instance in a dataset may be assigned
one or multiple labels. LDA is a generative model for text
corpora that yields highly interpretable models since each
topic is associated with a probability distribution over words.
While it is originally an unsupervised Bayesian model, it may
also be used in the supervised or semi-supervised setting.
Multi-label topic models combine two main features: They
are used to classify texts with one or several labels, this is the
multi-label part, but at the same time, they also provide a se-
mantic description of the different labels in the form of topics.
Labels are grouped or divided into topics or topic hierarchies
such that each topic is associated with a probability distribu-
tion, either over words or over labels or topics on a different
hierarchy level. These topics, that are a byproduct of the clas-
sifier training, are useful in their own right and can provide
a helpful addition to the pure classification output.
There are three main reasons why it is useful to combine
multi-label classification with topic models.

• First, after training a topic model, each word in a text
document is associated with a corresponding topic or
at least a distribution over topics. This enables to un-

derstand why a document is classified in a certain way.
The words that lead to assigning a specific label and rel-
evant areas of the text may be identified.

• Second, independently from the classification perfor-
mance at testing time, we can check what the model
has learned after training by inspecting the topics. This
way, certain words are identified as important for cer-
tain topics, and we may detect unwanted noise in the
topics. For example, we might see that a topic contains
stop words that are irrelevant to the overall theme of the
topic and subsequently remove those words to improve
generalization capabilities of the model. This makes
such models explainable and interpretable.

• A third reason that the learned topics are useful is that
they can be influenced from the start by changing the
prior. We can choose the probability distribution (e.g.
Gaussian or Dirichlet), change the parameters of the
distribution to adapt the degree of sparseness of the
topics or immediately fix certain parameters to, e.g.,
user inputs [47; 31] or prelearned values from earlier
models to improve convergence with limited training
data. Parameters could also be changed based on user
interaction [30].

Overall, unsupervised learning is a powerful way to train
general-purpose systems that are able to solve many different
tasks [58]. This is achieved by learning a model of the data
that can be transferred to fit different kinds of applications.
Therefore, the reasoning is that a well-trained topic model
can also be used as an efficient classifier while at the same
time providing the user with a model of the data that is gen-
eralizable.
This survey aims to give an overview of the field by catego-
rizing multi-label topic models according to different dimen-
sions, hoping to make them more easily accessible to new-
comers and point out possible connections to related fields.
First, Section 2 proposes three different categories of multi-
label topic models. The problem setting and essential aspects
of the two sub-fields, topic modeling and multi-label clas-
sification, are introduced as well. Section 2.1 explains LDA
and the different training methods, Gibbs sampling and vari-
ational Bayes, whereas multi-label classification is covered in
Section 2.5. Potential applications of different methods are
discussed in Section 3. Different variants of multi-label topic
models are introduced in Section 4, and a relevant selection
is explained in more detail. Section 5 lists some of the most
commonly used datasets in multi-label topic modeling and
Section 6 reports on relevant evaluation measures. Finally,



Table 1: This table provides an overview over topic models that are related to multi-label topic models in different ways.
supervised multi-label online dependencies nonparametric

Multi-label topic models
LabeledLDA [60] yes yes (yes) no no
LF-LDA [83] yes yes no no no
DependencyLDA [66] yes yes no yes no
DFLDA [40] yes yes no yes no
ML-PA-LDA-C [51] yes yes no no no
Fast Dep.-LLDA [13] yes yes yes yes no
Stacked HDP [11] yes yes no yes yes
Hybrid HDP [10] yes yes yes no yes
Correlated Labeling Model [76] yes yes no yes no
HSLDA [55] yes yes no yes yes

Single-label topic models
Salakhutdinov et al. [67] yes no no yes yes
Supervised LDA [44] yes no no no no
Dirichlet-multinomial regression [46] yes no no no no
SSHLDA [42] yes no no yes no
DiscLDA [35] yes no no no no
MedLDA [84] yes no no no no

Other related models
Author-topic model [65] no no no yes no
Partially Labeled [62] no no no yes no
PAM [39] no no no yes no
Correlated TM [36] no no no yes no
nPAM [38] no no no yes yes
Coupled HDP [69] no no no yes yes

Section 7 discusses future research directions and the influ-
ence on the broader field of machine learning. Section 8 con-
cludes the survey.

2. DIMENSIONS OF MULTI-LABEL
TOPIC MODELS

Multi-label topic models may be differentiated according to
three different dimensions. First, topic models may be trained
online, which means they can be updated with new data and
are more scalable to large amounts of data. These topic mod-
els are usually based on the variational Bayes training method
as opposed to sampling training methods. Second, topic
models may be parametric or nonparametric, where nonpara-
metric models allow to account for different prior topic or la-
bel frequencies. Nonparametric models are able to add new
topics during training, which allows them to automatically
adjust to the complexity in the training data and allows the
possibility for suggesting new labels that are not yet present
in the data. Third, multi-label topic models are differenti-
ated according to the way they consider label dependencies,
which is a crucial feature of multi-label classifiers. This sec-
tion gives an introduction to LDA topic models and then cov-
ers these three aspects in more detail. An overview of mod-
els for each of these dimensions is given in Table 1. Here,
also related models that are not supervised or not multi-label
are included. Supervised topic models incorporate a target
variable in some way, but are not necessarily multi-label. In
multi-label topic models each document may exhibit multiple
labels. Online topic models can be trained on streaming data.
Dependencies between topics or labels are only modeled by
some of the methods, whereas in nonparametric topic mod-
els, the number of topics is not fixed and they are in some way

based on hierarchical Dirichlet processes.
General information on the relevant probability distributions
and graphical models are for example to be found in the well-
known books by Bishop [4] or Murphy [48]. This introduc-
tion to latent Dirichlet allocation is based on the papers by
Blei et al. [5], who proposed a variational inference training
method and Griffiths and Steyvers [26], who introduced a
training method based on Markov chain Monte Carlo sam-
pling. Multi-label classification is introduced in Section 2.5.
There are already a number of surveys on general multi-label
classification. Therefore, we will only cover basic aspects and
refer the reader to existing surveys for more details [73; 81].

2.1 Topic Models
We start by describing how latent Dirichlet allocation (LDA)
is used to model collections of text documents. LDA [5] is a
generative model of document collections where each docu-
ment is modeled as a mixture of latent topics (see Equation 1).
LDA is built on the assumption that words as well as docu-
ments are exchangeable, which means that the order in which
words or documents are viewed plays no role in the training
process. With respect to words, this assumption is called the
“bag-of-words” assumption, meaning that each document is
viewed as a bag of words where the actual sequence of words
is irrelevant.
The model is given as follows, where each topic k ∈ 1, . . . ,K
is represented by a multinomial distribution φk over words
that is assumed to be drawn from a Dirichlet distribution with
parameter β. Document d is generated by drawing a distribu-
tion over topics from a Dirichlet θd ∼ Dirichlet(α), and for
the ith word token in the document, first drawing a topic in-
dicator zdi ∼ θd and finally drawing a word wdi ∼ φzdi .
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Figure 1: The graphical model of LDA.

wdi|zdi, φzdi ∼Multinomial(φzdi)

φ ∼Dirichlet(β) (1)
zdi|θd ∼Multinomial(θd)

θ ∼Dirichlet(α)

The corresponding generative process is given as follows:

• For each topic k ∈ 1, . . . ,K

– draw φk ∼ Dirichlet(β)

• For each document d ∈ D

– draw θd ∼ Dirichlet(α)

– For each word token with indices i = 1, . . . , Nd in
document d (Nd is the number of words in docu-
ment d)

∗ draw topic indicator zdi ∼ θd
∗ draw word wdi ∼ φzdi

To learn a model over an observed document collectionD, we
compute the posterior distribution over the latent variables z,
θ, and φ, which in general is intractable to compute directly.

p(φ, θ, z|D,α, β) =

K∏
k=1

p(φk|β)

D∏
d=1

p(θd|α)

Nd∏
i=1

p(zdi|θd)p(wdi|φzdi)

Therefore, it needs to be estimated. There are two main meth-
ods that are commonly used: Gibbs sampling and variational
Bayes. We now describe each of the two methods.
Gibbs sampling is a special case of Markov chain Monte Carlo
sampling (MCMC). Hereby, each variable is sampled con-
ditioned on all other variables, which are fixed. Since the
Dirichlet distribution is conjugate to the multinomial distri-
bution, it is possible to integrate/collapse out the latent vari-
ables φ and θ from the joint distribution p(w, z, φ, θ), where
w and z are the word and topic variables for all tokens i and

θ

α̃

z

θ̃

φ

β̃

N

D

K

Figure 2: The graphical model of the variational distribution
used to approximate the posterior of LDA.

documents d:

p(w, z) = p(w|z)p(z) =∫ ∫ ∏
k

p(φk)
∏
d

p(θd)
∏
i

p(wdi|φzdi)p(zdi|θd) dφdθ =∫ ∏
d

∏
i

p(wdi|φzdi)
∏
k

p(φk) dφ∫ ∏
d

∏
i

p(zdi|θd)
∏
d

p(θd) dθ,

where the two integrals in the last expression can be per-
formed separately. This enables efficient model training.
If we want to sample from the posterior for a specific zdi = k
given all remaining variables denoted by z−i and all words
w, the first part of the sampling equation is given by the first
integral∏
k

Γ
(∑

v∈V βv
)∏

v∈V Γ (βv)

Γ (nwk + βw)

Γ
(∑

v∈V (nvk + βv)
) ∝ n−wk + βw∑

v (n−vk + βv)

and the second part similarly by

Γ(
∑
k αk)∏

k Γ(αk)

∏
k Γ(ndk + αk)

Γ
(∑

k (ndk + αk)
) ∝ n−dk + αk.

Finally, the conditional probabilities for training an LDA topic
model are given by [26]

p(zdi = k|z−di, w) ∝ nwk + βw∑
w′ (nw′k + βw′)

(ndk + αk) , (2)

where nwk and ndk are the respective counts of topics k with
words w or in documents d. α and β are hyperparameters.
z−di are all topic indicators except the one for token i in doc-
ument d.
Intuitively, Equation 2 consists of two parts, where the first
part describes the probability of a word in a certain topic. This
part is responsible for words preferentially being assigned to
topics where they already occur in, thus exploiting the clus-
tering effect of the Dirichlet distribution. The second part is
proportional to the probability of a topic in a certain docu-
ment. Therefore, while the first part may be seen as ensuring
the consistency with the global model and its topics, the sec-
ond part ensures that each document minimizes the number
of topics it exhibits at the local level, ensuring that a topic is
more likely if other words in the same document have already
been assigned to this topic.
In variational Bayesian inference a variational distribution
(see Figure 2) is introduced to approximate the posterior by



minimizing the Kullback-Leibler (KL) divergence between
the variational distribution q and the true posterior.

KL[q(z|D)||p(z|D)] =
∑
z

q(z|D) log
q(z|D)

p(z|D)

= Eq(z|D) [log q(z|D)− log p(z|D)]

Usually, a fully factorized variational distribution is chosen:

q(φ, θ, z|β̃, α̃, θ̃) =

D∏
d

q(θd|α̃d)
Nd∏
i

q(zdi|θ̃di)
K∏
k

q(φk|β̃k),

where β̃, α̃ and θ̃ denote the variational parameters.
The evidence lower bound (ELBO) that is to be maximized is
given as follows:

log p(W |α, β) ≥

L(β̃, α̃, θ̃) , Eq[log p(φ, θ, z,W )] +H(q(φ, θ, z))

= Eq[log p(θ|α)] + Eq[log p(z|θ)]+
Eq[log p(w|z, φ)] +H(q(φ, θ, z)),

where H denotes the entropy and in the first step the log-
likelihood is lower bounded using Jensen’s inequality. By cal-
culating the gradient of the ELBO with respect to the varia-
tional parameters, the parameters are updated until conver-
gence.
The local/document-level update equations for variational
Bayes are [5; 72]:

α̃dk = α+

Nd∑
i=1

θ̃dki (3)

θ̃dki ∝

exp

(
Ψ(β̃wk)−Ψ(

∑
v

β̃vk)

)
exp

(
Ψ(α̃dk)−Ψ(

∑
k′

α̃dk′)

)
,

where for the expectation of the log-Dirichlet we have
E[log θ|α] = Ψ(α) − Ψ(

∑
k αk) and Ψ is the digamma func-

tion.
However, Teh et al. [72] propose a collapsed version of varia-
tional Bayes where the parameters are marginalized. By us-
ing a Gaussian approximation and a Taylor expansion, that is
not explained in detail here, they arrive at the update equa-
tion

θ̃dki ∝
β̃wk + β∑

w′ (β̃w′k + βw′)
(α̃dk + α), (4)

where α and β are hyperparameters andNd is the number of
words in document d. This equation has a strong similarity
with the sampling equation for collapsed Gibbs sampling. It
is shown by Teh et al. [72] and Asuncion et al. [2] that this
collapsed version called CVB0 [2; 23] has a better convergence
than the uncollapsed one.
Based on the local variational parameters θ̃, the global param-
eter β̃ is updated as follows:

β̃vk = β +

|D|∑
d=1

Nd∑
i=1

θ̃dki1[wdi = v], (5)

where |D| is the number of documents. 1[wdi = v] is one if
word wdi = v and zero otherwise.

Algorithm 1 Batch Variational Bayes
1: while not converged do
2: for each document d do
3: for each word token do
4: update local parameters (Equation 4)
5: normalize θ̃di to sum to one
6: end for
7: update local parameters (Equation 3)
8: end for
9: update global parameters (Equation 5)

10: end while

For the batch variational Bayes algorithm, all local varia-
tional parameters θ̃d for all documents d are computed and
the global parameter is updated in one step. The algorithm
(see Algorithm 1) may also be described as consisting of an
expectation/E-step and a maximization/M-step:

• E-Step: For each document, the local variational param-
eters are optimized (lines 2–8).

• M-Step: The lower bound on the log-likelihood is maxi-
mized with respect to the global variational parameters
(line 9).

2.1.1 Gibbs Sampling vs. Variational Bayes
Convergence of Gibbs sampling can be slow in comparison
to variational methods, since updates only involve a sampled
topic instead of the full distribution over topics as in varia-
tional Bayes. On the other hand, Gibbs sampling is unbiased,
meaning it is guaranteed to learn the true posterior after an
infinite number of iterations. How to determine if a Gibbs
sampler has converged, however, is still an open problem.
Another advantage of Gibbs samplers are the sparse updates.
One word-topic assignment is updated at a time so the global
counts can be efficiently updated for each document by only
decrementing the counts of the previous word-topic assign-
ments and incrementing counts for the new word-topic as-
signments. Variational Bayes updates are dense in compari-
son because the whole distribution over topics is kept for each
word, making frequent updates inefficient. This is one reason
why updates are usually done in minibatches. While varia-
tional Bayes converges generally faster than Gibbs sampling,
the method is biased and not guaranteed to arrive at the true
posterior.
The second main difference between variational Bayes and
Gibbs sampling is that variational Bayes topic models may
be trained online, one minibatch at a time. Gibbs sampling
on the other hand is a batch method. Convergence of Gibbs
sampling is only guaranteed if all data is kept available and
all topic assignments keep being updated until convergence.
While it is theoretically possible to train it online by only sam-
pling topic assignments once, in practice this is only success-
ful in restricted settings where the labels/topics for each doc-
ument are already known and even then there is no guaran-
tee for convergence. Particle filters [18] provide a way around
this, but are generally not practical and efficient. This is why
for streaming settings and models that have to be contin-
uously updated, variational Bayesian methods are the pre-
ferred choice.

2.2 Online Topic Models



Algorithm 2 Online Variational Bayes
1: while not converged do
2: draw minibatch M
3: for each document d ∈M do
4: for each word token do
5: update local parameters (Equation 4)
6: normalize θ̃di to sum to one
7: end for
8: update local parameters (Equation 3)
9: end for

10: update global parameters (Equation 6)
11: end while

As a first dimension for differentiating multi-label topic mod-
els we consider whether the training algorithm is an online or
a batch algorithm. In the batch method, all local parameters
have to be kept in memory and are updated at once. For large
datasets this can lead to large memory consumption and slow
down training, especially at the beginning. Therefore, an on-
line method based on minibatches is introduced by Hoffman
et al. [28; 29] that converges faster and is efficient to train on
large datasets. Teh et al. [72] and Asuncion et al. [2] improve
this work by collapsing out the latent variables. Foulds et al.
[23] combine the online part of Hoffman et al. and Cappe
and Moulines [19], and the collapsing part of Asuncion et al.,
resulting in an online stochastic collapsed variational Bayes
(SCVB) with improved performance.
The online variational Bayes algorithm is summarized in Al-
gorithm 2. It is similar to the batch algorithm except we now
iterate over the documents minibatch by minibatch instead of
over all documents at once and use a different update equa-
tion for the global parameters (line 10). Updating variational
parameters β̃ for one minibatch M is done as follows, where
the counts for one minibatch are scaled by |D|

|M| to arrive at
the expectation for the whole corpus and ρt is a parameter
between zero and one:

β̃vk = (1− ρt)β̃vk + ρt

(
β +

|D|
|M |

∑
d∈M

Nd∑
i=1

θ̃dki1[wdi = v]

)
.

(6)
Given appropriate updates and choice of hyperparameter ρt,
the online algorithm is guaranteed to converge to the optimal
variational solution. Since the global parameters are updated
after each minibatch instead of each iteration over the whole
dataset, the online algorithm usually converges faster than
the batch algorithm, especially at the beginning of training.

2.3 Nonparametric Topic Models
According to the second dimension we differentiate paramet-
ric and nonparametric multi-label topic models. Nonpara-
metric topic models are based on hierarchical Dirichlet pro-
cesses (HDPs). In HDP topic models [71], the multinomial
distribution θ from LDA is drawn from an HDP instead of a
Dirichlet distribution:

θ ∼ DP (G0, b1), G0 ∼ DP (H, b0).

Dirichlet processes (DPs) [71] are distributions over probabil-
ity measures. If a distribution over topics is drawn from a DP,
the number of topics is not fixed. This is why such models are
called nonparametric.
Because the prior is hierarchical, there is a local topic distribu-

tion θ for each document and a global topic distribution G0,
which is shared among all documents. The advantage of this
global topic distribution is that it allows topics of widely vary-
ing frequencies, whereas in standard LDA with a symmetric
prior α, all topics are expected to have the same frequency.
The asymmetric prior of HDP usually leads to a better repre-
sentation and higher log-likelihood of the dataset [71].
Sampling methods for HDPs are mostly based on the Chinese
restaurant process metaphor. Each word token is assumed to
be a customer entering a restaurant, and sitting down at a cer-
tain table where a specific dish is served. Each table is asso-
ciated with one dish, which corresponds to a topic in a topic
model. The probability for a customer to sit down at a cer-
tain table is proportional to the number of customers already
sitting at that table. This leads to a clustering effect where
new customers are most likely to sit at a table that already has
attracted a large number of customers. With a certain prob-
ability α (see Equation 7), the customer sits down at a new
table. In this case, a topic is sampled from the base distribu-
tion. For an HDP topic model, each document corresponds
to a restaurant. The topics in each document-restaurant are
drawn from a global restaurant. Because all documents share
the same base distribution that is discrete, represented by the
global restaurant, the topics are shared by the local document
restaurants. If a new table is added to a document restaurant,
a pseudo customer enters the global restaurant (see Figure 3).
If a new table is opened in the global restaurant, a new topic
is added to the topic model.

P (zn = k|z1 . . . zn−1) =

{ nk
n−1+α

, nk > 0
α

n−1+α
, new table

(7)

In terms of the statistics that need to be kept, in the basic ver-
sion we need to store for each word not only the sampled
topic, but also the table it is associated with. Also, we need
to store the corresponding topic for each table.
The generative model for the two-level HDP topic model is
given as follows:

θ0|b0, H ∼ DP (b0, H), θd|b1, θ0 ∼ DP (b1, θ0)

z|θd ∼ θd, w|z ∼Mult(z)

Each wordw is assumed to be drawn from a multinomial dis-
tribution associated with a certain topic z. The topic indica-
tor variable z is drawn from a document-specific distribution
over topics θd, which is in turn drawn from a DP with base
distribution θ0. θ0 is drawn from another DP with base dis-
tribution H . b are hyperparameters.
Three basic sampling methods were introduced by Teh et al.
[71]. Two methods are directly based on the Chinese restau-
rant representation, whereas the third is the direct assign-
ment sampler.
The currently most efficient sampling method for HDPs is by
Chen et al. [20]. Here, an additional variable, the table in-
dicator u, is introduced, which indicates up to which level a
customer has a table contribution. In the case of a two-level
HDP, u = 2 means the customer sits at an existing table, u = 1
means the customer opens a new table at the lowest level and
sends a pseudo customer up to the next level, whereas u = 0
means that the customer opens a new table at the lowest level,
sends a pseudo customer to the next level, which again opens
a new table thereby adding a new topic to the topic model (see
Fig. 3).
We now briefly explain how to arrive at the table indicator
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Figure 3: Illustration of a hierarchical Chinese restaurant process. For each table at a local restaurant one customer is sent to the
global restaurant. The numbers represent different topics.

representation. The starting point is the direct assignment
sampler by Teh et al. [71]. In this sampler each customer is
directly assigned a topic and the number of tables per topic
Mk is sampled separately. (The capital lettersN , andM refer
to global counts over all documents, whereas n and m refer
to local document counts.)
The probability for the number of tablesMk for topic k given
the number of customers per topicNk is given by (see Buntine
and Hutter [7], Lemma 8)

p(Mk|Nk, a, b) =
(b|a)Mk

(b)Nk

S
Nk
Mk,a

,

where Snm,a is a generalized Stirling number defined by the
recursion Sn+1

m,a = Snm−1 +(n−ma)Snm,a, form ≤ n. It is zero
otherwise and S0

0,a = S1
1,a = 1.

Note that in this work only the standard Dirichlet process is
considered, which is the special case of the Poisson-Dirichlet
process (PDP) for a = 0. The parameter b > 0 is usually
estimated andnm is the number of customers at tablem. (x)N
denotes the Pochhammer symbol x · (x + 1) · . . . · (x + N −
1) = Γ(x+N)

Γ(x)
and (x|y)N denotes the Pochhammer symbol

with increment y, x ·(x+y) · . . . ·(x+(N−1)y), and (x|0)N =
xN .
For a = 0, Equation 2.3 becomes (shown by Antoniak [1],
compare Teh et al. [71], Equation 40):

p(Mk|Nk, b) = S
Nk
Mk,0

bMk
Γ(b)

Γ(b+Nk)
.

Applying this result to the PDP with base distributionH , the
joint probability of the samples zi and the number of tables
M1,M2, . . . ,MK for each topic k = 1, . . . ,K is

p(z1, z2, . . . , zN ,M1, . . . ,MK) =
(b|a)Mk

(b)Nk

K∏
k=1

(H(k)S
Nk
Mk,a

).

Now, this representation with the number of tables per topic
Mk is converted to the representation with table indicators ui
that are assigned to each token and specify at which levels this
token has a table contribution. E.g., if u1 = 0, the first token
contributes to the table count at all levels, whereas in the case
of two levels and u1 = 2 the token does not contribute to the
table count, i.e. the customer sits at an existing table.
The joint posterior distribution of the hierarchical PDP given

base distribution H0 for the root node is now given by

p(z, u|H0) =
∏
j≥0

(
(b|a)Mj

(b)Nj

K∏
k=1

S
njk
mjk,a

mjk!(njk −mjk)!

njk!

)
,

where j is the index of the hierarchy level,Nj andMj are the
overall number of customers and tables for restaurant j and
njk and mjk are the respective counts for topic k.
To get the posterior distribution for a specific topic zi = k and
table indicator ui = u, application of the chain rule yields [20]

p(zi = k, ui = u|z−i, u−i, H) =
p(z, u,H)

p(z−i, u−i, H)
=

∏
j∈path

(bj + ajMj)
δM′

j
6=Mj

(bj +Nj)
δN′

j
6=Nj

S
n′jk
m′

jk
,a

S
njk
mjk,a


δn′

jk
6=njk||m

′
jk
6=mjk

(m′jk)
δm′

jk 6=mjk (n′jk −m′jk)
δn′

jk
−m′

jk
6=njk−mjk

(n′jk)
δn′

jk
6=njk

.

Here the path consists of the restaurants in the hierarchy
where the customer has a table contribution. The subscript
−i refers to all variables except the one with index i, N ′,
M ′, n′ and m′ are the counts after adding the current to-
ken to the counts and N , M , n and m refer to counts before
the addition of token i. The ratio of Pochhammer symbols
(x|y)N+1/(x|y)N reduces to x+Ny, whereas (x)N+1/(x)N =
Γ(x + N + 1)/Γ(x + N) = x + N . Snm are generalized Stir-
ling numbers of the first kind whose ratios can be efficiently
precomputed and retrieved in O(1).1
Finally, the sampling equations of the full 2-level HDP topic
model for the joint sampling of topic and table indicator are as
follows [20]. rest is an abbreviation referring to all remaining
variables.
If the topic is new for the root restaurant (table indicator is
zero):

P (zi = knew, ui = 0|rest) ∝ b0b1
(M. + b0)(Nj + b1)

Pwknew

(8)

1See Buntine and Hutter [7] for an efficient way to compute
ratios of these numbers. They can be precomputed once and
subsequently retrieved in O(1). Note that it may be neces-
sary to store large values sparsely if the number of tokens in
a restaurant becomes large.



If the topic is new for the base restaurant (e.g. a document),
but not for the root restaurant (table indicator is one):

P (zi = k, ui = 1|rest) ∝ b1M
2
k

(Mk + 1)(M. + b0)(Nj + b1)
Pwk

(9)
If the topic exists at the base restaurant and an already exist-
ing table is chosen (table indicator is two):

P (zi = k, ui = 2|rest) ∝
Sn

jk+1
mjk

S
njk
mjk

njk −mjk + 1

(njk + 1)(Nj + b1)
Pwk

(10)
If the topic exists at the base restaurant and a new table is
opened (table indicator is one):

P (zi = k, ui = 1|rest) ∝ (11)

b1
Nj + b1

S
njk+1

mjk+1

S
njk
mjk

mjk + 1

njk + 1

M2
k

(Mk + 1)(M. + b0)
Pwk (12)

The prior term Pwk is calculated in the same way as for the
standard LDA model:

Pwk =
Nwk + β∑

w′ (Nw′k + β)
(13)

In the above equations, b0 is the hyperparameter for the root
DP, b1 is the hyperparameter for the lower level DP,Mk is the
total number of tables for topic k, M. is the total number of
tables, njk is the number of customers for topic k in restaurant
j, Nwk is the total number of tokens for word w and topic k,
and mjk is the number of tables for topic k in restaurant j.
Summing up this section, nonparametric topic models and
the most efficient sampling method were introduced. The
main feature of nonparametric models is the ability to model
topics or labels with different frequencies and to let the num-
ber of topics/labels adapt to the size of the dataset.

2.4 Dependency Topic Models
As a third dimension we consider whether or not label depen-
dencies are modeled. This is a crucial feature of multi-label
classifiers. For example, a text might have two labels, “Lan-
guage” and “Programming”. Maybe the corresponding text
is about programming languages, meaning that there is some
overlap between the two labels. This kind of dependency is
probably not exhibited by labels such as “Dog” and “Matri-
ces”. A text about dogs is in all likelihood not about matrices,
whereas a text about languages has a certain probability to
also be about programming. Modeling dependencies there-
fore has the potential to improve the accuracy of multi-label
classifiers.
In the streaming setting, large amounts of data have to be pro-
cessed in a short time, which makes it more difficult to exploit
such dependencies. While there is a large amount of training
data available, it is not always the case that there is enough
data for each label. Often there is a large number of rare la-
bels that may benefit from additional dependency informa-
tion. However, the classifier has to learn labels and their de-
pendencies at the same time which can lead to errors that may
affect performance.

2.5 Multi-label classification
Multi-label classification is the problem where each instance
in a dataset is assigned one or several labels. It is to be dis-
tinguished from multi-class classification, which only assigns

one out of multiple classes to each instance. Multi-label clas-
sification may also be seen as a special case of multi-label
ranking, where each instance is associated with a ranking
over the possible labels as well as a cut-off point which deter-
mines at which point to separate the negative from the posi-
tive labels [24].
Multi-label methods are commonly divided into algorithm-
adaptation and transformation-based approaches [73]. The
former directly adapt an algorithm to multi-label use,
whereas the latter transform the problem into several single-
label problems.
The most simple, yet efficient, transformation-based ap-
proach is the binary relevance method (BR [73; 6]). BR does
not take dependencies between labels into account, but in-
stead trains one classifier for each label separately. The pre-
dictions for the different labels are then combined into one
multi-label prediction.
While BR is considered to be an efficient and scalable clas-
sifier, it still requires to learn one classifier per label, which
can lead to very large models. Most multi-label algorithms in
the literature are even more inefficient, many have a complex-
ity that is quadratic in the number of labels (see e.g. Zhang
and Zhou [82], Wicker et al. [77]), and therefore are not appli-
cable in a large-scale setting. Recently, there have also been
some approaches using deep learning and neural networks,
but none of them scales well with very large label numbers
[78; 25; 80; 49].
In light of these issues, a new line of work on so-called ex-
treme mult-label classification has been developed in recent
years. This work is concerned with datasets having several
hundred thousand or even millions of labels and features. For
example, FastXML (Fast eXtreme Multi Label) by Prabhu and
Varma [56], an ensemble of decision trees, has prediction cost
that is logarithmic in the number of labels.
Multi-label topic models can be considered to be more ef-
ficient than transformation-based approaches because they
are algorithm-adaptation approaches that just train a single
model for all labels. However, most multi-label topic models
have not yet been applied in extreme multi-label classifica-
tion settings although a lot of work has been done on devel-
oping inference algorithms for LDA that scale sub-linearly in
the number of labels [37; 9; 12].

3. APPLICATIONS
Multi-label topic models have for example been applied in so-
ciology [45] to answer questions such as “What terms do our
categories reference?”, “Have our categories changed over
time?”, or “Do certain groups have their own language and
does it change over time?”, among others. Ramage et al.
[61] cluster web pages into semantic groups using a semi-
supervised topic model called multi-multinomial LDA (MM-
LDA) in which the labels are used as an additional input for
the resulting clustering so that the topics are informed by the
labels but do not correspond to them. They show that the in-
clusion of the labels improves the topic quality and the joint
modeling of words and labels improves classification perfor-
mance as compared to k-means.
Another line of work applies multi-label topic models on
scientific writing such as papers or PhD theses. Papa-
giannopoulou et al. [53] employ multi-label LDA in a compe-
tition on large-scale indexing, where abstracts from biomedi-
cal scientific papers have to be tagged with their correspond-



ing medical subject headings (MeSH). Ramage et al. [63] ap-
ply a multi-label topic on the PhD thesis abstracts for dif-
ferent universities that are associated with keywords in the
Proquest UMI database. They then compare the topic vec-
tors over time to find out which universities lean more to-
wards the future and which universities are oriented more
towards the past. One of the most well-known applications
is the author-topic model [65] that assigns documents to au-
thors and determines a distribution over topics for each au-
thor. This model is, however, not directly intended for multi-
label classification. Johri et al. [33] use multi-label topic mod-
eling to study the collaboration of scientists in computational
linguistics with latent mixtures of authors.
The largest body of work consists of applications on Twitter
data. Ramage et al. [59] use multi-label topic modeling to
characterize a user’s data stream on Twitter. Tweets are la-
beled into different categories according to substance, status,
style, social or other. They aim to provide a way to recom-
mend tweets according to different dimensions and charac-
terize them by different criteria. Cohen and Ruths [22] use
multi-label topic models to classify user’s political orientation
on Twitter. Quercia et al. [57] develop a model called Tweet-
LDA that is used to assign labels to user profiles, to re-rank
user feeds and to suggest new users to follow. Bhattacharya
et al. [3] infer user interest on Twitter using hashtags on a
scale of millions of users. Mukherjee and Liu [47] use a multi-
label topic model to extract topics from text corpora with user
guidance, meaning the users can specify seed words for the
sentiment aspects of topics they wish to extract.
The above (probably incomplete) list shows that there is a di-
verse set of possible applications for multi-label topic models
that is sure to keep growing.

4. DIFFERENT MULTI-LABEL TOPIC
MODELS

This section gives an overview of the different kinds of multi-
label topic models that belong to the different dimensions
as well as some closely related non-multi-label topic mod-
els. The multi-label topic models are listed in the first sec-
tion of Table 1. In Sections 4.2 and 4.3 Labeled LDA and
Dependency-LDA are introduced in detail. Li et al. [40] intro-
duce Frequency-LDA (FLDA) and Dependency-Frequency-
LDA (DFLDA) that more or less correspond to Prior-LDA and
Dependency-LDA by Rubin et al. with slight modifications in
the training procedure that lead to improvements. Zhang et
al. [83] introduce labeled LDA with function terms (LF-LDA),
a topic model that extracts noisy function terms from tex-
tual data to improve the performance of multi-label classifica-
tion. Padmanabhan et al. [51] propose Multi-Label Presence-
Absence LDA with Crowd (ML-PA-LDA-C), a multi-label
topic model that accounts for multiple noisy annotations
from the crowd. Fast Dep.-LLDA, hybrid HDP and stacked
HDP are introduced in Sections 4.4, 4.5 and 4.6.
The Correlated Labeling Model by Wang et al. [76] is intro-
duced in Section 4.1. Hierarchically supervised latent Dirich-
let allocation [55] (HSLDA) is a multi-label topic model that
extends supervised LDA (sLDA [44]) to consider label depen-
dencies. It is trained using Gibbs sampling and uses a non-
parametric prior for the document-topic distributions trained
by the direct-assignment sampler of Teh et al. [71]. Its main
feature is the capability to model label hierarchies, i.e. labels
that come from a predefined taxonomy.
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Figure 4: The graphical model of the Correlated Labeling
Model (CoL).

Existing supervised models include Supervised LDA
[44], Dirichlet-multinomial regression (DMR) [46], semi-
supervised hierarchical topic model (SSHLDA), DiscLDA
[35] and MedLDA [84]. However, these models are single-
label classification or regression models and not usable in a
multi-label setting.
There exist a number of methods that model dependen-
cies between topics, but are (at least partially) unsupervised.
Among these is the author-topic model [65] which assigns an
author and a topic to each word, such that one document is
modeled as a mixture of topics and each author is associated
with a topic distribution. In the partially labeled topic model
by Ramage et al. [62] each label is divided into several top-
ics. Another method that models topic dependencies is the
Pachinko allocation model (PAM, see Figure 5b) [39]. It as-
signs topics on two different hierarchy levels in such a way
that each super-level topic is associated with a distribution
over sub-level topics and each document has a distribution
over both super- and sub-topics. A nonparametric version
of this model is proposed by Li [38]. Nonparametric PAM
(nPAM) is based on HDPs that model topic correlations. An-
other model based on nested DP called cHDP is proposed by
Shimosaka et al. [69]. This model requires that each docu-
ment is assigned to exactly one super-topic. The proposed
learning procedure is based on variational Bayes. The gener-
ative process is defined as follows:

G0 ∼ DP (b0, H), Q ∼ DP (α,DP (β,G0)), Gd ∼ Q

As the second equation shows, here one DP is nested into
another DP as described by Rodriguez et al. [64]. Another
model that allows topic sharing is proposed by Salakhutdi-
nov et al. [67]. It is a supervised model, however, it does not
allow multiple labels per document. Each document is as-
signed one label using a nested Chinese restaurant distribu-
tion. Then the whole document is sampled according to the
document’s label. The correlated topic model [36] is unsuper-
vised and models correlations between topics using a logis-
tic normal distribution. However, the model is complicated
since the normal distribution is not conjugate to the multino-
mial distribution. The most important multi-label topic mod-
els and their relation to some of the mentioned related models
are now discussed in more detail.

4.1 Correlated Labeling Model
Wang et al. [76] develop a model called CoL (Correlated La-



beling Model). It models each label as a distribution over la-
tent topics. A variational learning method is proposed and
the results show that this model achieves a slightly better F-
measure on the tested datasets than SVMs.
In this model, there areD documents,C classes and V words
overall and one document consists ofM classes andN words.
φ is the document-specific distribution of classes, θ is the
topic distribution for each class. µ and Σ are the mean and
covariance of the Normal distribution. The graphical model
is shown in Figure 4 and the generative process is defined as
follows:

1. Sample φ ∼ N(µ,Σ)

2. For each class/label cm, m ∈ {1, 2, 3, . . . ,M}

(a) Sample cm ∼Mult( exp(φ)
1+

∑
i exp(φi)

)

(b) Sample topic distribution θm ∼ Dir(α|cm)

3. For each word wn, n ∈ {1, 2, 3, . . . , N}

(a) Sample class yn ∼ Uniform(1, 2, 3, . . . ,M)

(b) Sample topic zn ∼Mult(θ|yn)

(c) Sample word wn ∼Mult(βzn)

They note that the model is especially good at predicting rare
labels in unbalanced datasets. While this model has an effi-
cient training procedure, the inference process is expensive
for large numbers of labels and a heuristic has to be used.

4.2 Labeled LDA
Labeled LDA (LLDA) is introduced by Ramage et al. [60]. In
this work, the collapsed Gibbs sampling topic model by Grif-
fiths and Steyvers [26] is extended by introducing document
labels Λd that are generated from a Bernoulli distribution for
each topic k.
The model is defined in a slightly different way in Rubin et al.
[66] although in practice the training procedure is the same.
Here, the model is called Flat-LDA and does not include a
generative procedure for the set of labels via Bernoulli vari-
ables. During training of both models, the Bernoulli variables
do not play any role. In practice, both models correspond to
LDA with a restriction of sampling only from the document
labels during training. If each document is only assigned a
single label, the model reduces to Naive Bayes [60].
Ramage et al. and Rubin et al. propose collapsed Gibbs sam-
pling as a training algorithm, however, this is only one poten-
tial variant of the model. Since the idea of Flat-LDA is simply
to replace unsupervised topics with labels, the same idea can
be applied to topic models with other training methods as
well:

1. Variational inference can be used as an alternative train-
ing algorithm (see, e.g., Papanikolaou et al. [54]). The
disadvantage is that the algorithm is biased. Also it
is more difficult to implement sparse updates. On the
positive side, variational inference makes it possible to
train the model online.

2. Nonparametric topic models are another alternative for
supervised training (see Section 2.3). These hierarchical
Dirichlet process topic models provide an asymmetric
topic/label prior. This model may also be trained using
different algorithms:

(a) Variational Bayes
(b) Gibbs sampling
(c) Hybrid Variational-Gibbs (see Section 4.5)

3. More complex hierarchical topic models may be used.
In particular,

(a) the author-topic model [65]: Gibbs sampling is
used for training.

(b) Dependency-LDA (Section 4.3): Gibbs sampling is
used for training.

(c) Fast-Dependency-LDA (Section 4.4): This model
can be trained with Gibbs sampling or variational
inference.

(d) Stacked HDP (Section 4.6): Gibbs sampling is used
for training.

This summary shows that the simple idea of supervised topic
models has many variants depending on the one hand on the
exact model that is used (parametric or nonparametric, sim-
ple flat or hierarchical) and depending on the other hand on
the training algorithm for the chosen model.

4.3 Dependency LLDA
Dependency-LDA (Dep.-LLDA, see Figure 5a) is a topic
model for multi-label classification due to Rubin et al. [66].
The idea of Dep.-LLDA is to learn a model with two types of
latent variables: the labels and the topics. The labels are as-
sociated with distributions over words, while the topics are
associated with distributions over labels. The topics capture
dependencies between the labels, since the frequent labels in
one topic are labels that tend to co-occur in the training data.
The notation for the following is summarized in Table 2.
The generative process is given as follows:

1. For each topic k ∈ 1, . . . ,K sample a distribution over
labels φ′k ∼ Dirichlet(βY )

2. For each label y ∈ L sample a distribution over words
φy ∼ Dirichlet(β)

3. For each document d ∈ D:

(a) Sample a distribution over topics θ′ ∼
Dirichlet(γ)

(b) For each label token in d:
i. Sample a topic z′ ∼Multinomial(θ′)

ii. Sample a label c ∼Multinomial(φ′z′)

(c) Sample a distribution θ ∼ Dirichlet(α′)
(d) For each word token in d:

i. Sample a label z ∼Multinomial(θ)

ii. Sample a word w ∼Multinomial(φz)

The Gibbs sampling equations for the labels z and the topics
z′ are given by:

P (z = y|w, z−i, z′−i) ∝
n−wy + β

n−·y + |W |β (n−dy + α′) (14)

P (z′ = k|c = y, c−i, z
′
−i) ∝

n−yk + βY
n−·k + |L|βY

(n−dk + γ),
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Figure 5: The graphical models of the original Dep.-LLDA by Rubin et al. [66], PAM [39], and Fast-Dep.-LDA.

where n−wy is the number of times wordwi occurs with label
y. n−·y is the number of times label y occurs overall, n−dy is
the number of times label y occurs in the current document,
n−yk is the number of times label y occurs with topic k, n−·k
is the number of times topic k occurs overall and n−dk is the
number of times topic k occurs in document d. The subscript
− indicates that the current token is excluded from the count.
The connection between the labels and the topics is made
through the prior α′. To calculate α′, Rubin et al. propose to
make use of the label tokens c. According to these Md label
tokens, α′ for document d is calculated as follows:

α′ = [η
nd1
Md

+ α, η
nd2
Md

+ α, ..., η
nd|L|
Md

+ α],

where ndy is set to one during training, and to the number of
times a particular label is sampled during testing, and η and
α are parameters.
During testing however, instead of takingM samples and cal-
culating α′ as described above, a so-called “fast” inference
method is used. This means the sampled z variables are used
directly instead of c, and α′ is calculated as follows:

α′ = ηθ̂′φ̂′ + α,

where φ̂ and θ̂ are the current estimates of φ and θ. During
training, since the labels of each document are given, φ and φ′
are conditionally independent which allows separate training
of both parts of the topic model. Finally, they apply a heuristic
to scale α′ according to the document length during testing.
Overall, Dep.-LLDA is an effective and efficient method for
multi-label classification.

4.4 Fast Dependency LLDA
Fast Dep.-LLDA [14] (see Figure 5c) is based on Dependency
LLDA, but has a simpler model structure and thus can be
trained online using variational Bayes.

Fast-Dep.-LLDA and Dep.-LLDA have strong similarities.
The main difference is the omission of θ and α′ in Fast-Dep.-
LLDA. Both models learn the label dependencies through the
label-topic distributions φ′. Dep.-LLDA passes the depen-
dency information down via the label-prior α′ and the la-
bel distribution θ. Fast-Dep.-LLDA, however, takes the more
direct approach of generating the labels from φ′ directly in-
stead of using the intermediary distribution θ (see the graph-
ical models in Figures 5a and 5c). Thereby Fast-Dep.-LLDA
avoids a couple of heuristics that are employed by Dep.-
LLDA:

1. Dep.-LLDA employs a fast inference method that is em-
pirically found to be faster and to lead to more accurate
results.

2. The calculation of the parameter α′ itself involves two
parameters η and γ that are determined heuristically by
the authors.

3. During evaluation the parameter α′ is scaled according
to the document length.

4. During evaluation, the label tokens c and in particular
the number of labels are unknown. To circumvent this
problem, the authors replace the label tokens c by the la-
bel indicator variables z during testing, thereby assum-
ing that the number of labels is equal to the document
length.

The full generative process of Fast-Dep.-LLDA is given in Ta-
ble 3. Each document is only associated with one document-
specific distribution θ′ over the topics. In comparison,
Dependency-LDA has two document-specific distributions,
θ and θ′, where θ is a label distribution. The label distribu-
tion θ is implicitly contained in Fast-Dep.-LLDA and can be
obtained by multiplying the document-specific topic distri-
butions θ′ with the global topic-label distributions φ′.



Table 2: Notation for Dep.-LLDA Gibbs sampling models
V words
K number of topics
L labels
D documents
Nd number of words in document d
i,j,y,k indices over word tokens, documents, labels and topics resp.
z,c label indicator variables
z′ topic indicator variables
α,β,βY ,γ hyperparameters (see generative processes)
φ, φ′ word-label distribution, label-topic distribution
θ,θ′ document-label, document-topic distribution
n−wy count for word w with label y excluding the current token
n−·y count for label y excluding the current token
n−dy count for label y in document d excluding the current token
n−yk count for label y with topic k excluding the current token
n−·k count for topic k excluding the current token
n−dk count for topic k in document d excluding the current token

Table 3: The generative process of Fast-Dep.-LLDA

For each topic k ∈ 1, . . . ,K
- sample a distribution over labels φ′k ∼ Dirichlet(βY )
For each label y ∈ L
- sample a distribution over words φy ∼ Dirichlet(β)
For each document d ∈ D:
1. Sample a distribution over topics θ′ ∼ Dirichlet(α)
2. For each token in d:
2.1 Sample a topic z′ ∼Multinomial(θ′)
2.2 Sample a label z ∼Multinomial(φ′z′)
2.3 Sample a word w ∼Multinomial(φz)

From the graphical model and the generative process, the
joint distribution of Fast-Dep.-LLDA is given by

P (w, z, z′) = P (w|z, φ)P (z|z′, φ′)P (z′|θ′).

To obtain a collapsed Gibbs sampler, φ, φ′, and θ′ have to
be integrated out from the three conditional probabilities re-
spectively. The integrals can be performed separately as in
Griffiths and Steyvers [26], resulting in the following condi-
tional distribution for the latent variables z and z′:

P (z = y, z′ = k|w, z−i, z′−i) ∝
n−wy + β

n−·y + |V |β
n−yk + βY
n−·k + |L|βY

(n−dk + α)

This sampling equation results in a blocked Gibbs sampler
that samples two variables at a time instead of just one: each
word is assigned a topic and a label. They propose the use
of a basic Gibbs sampler that only samples one variable at a
time instead. This may have the disadvantage of making suc-
cessive samples more dependent [4], but the sampling com-
plexity is reduced from O(K · |L|) to O(K + |L|).
The corresponding sampling equations for the alternate sam-
pling of labels and topics are given as follows. Given z′, the

equation for sampling z is

P (z = y|w, z′ = k, z−i, z
′
−i) ∝

n−wy + β

n−·y + |V |β (n−yk + βY ).

(15)

The sampling equation for z′ follows from P (z′|z) =
P (z,z′)∑
z′ P (z,z′) , where P (z, z′) = P (z|z′, φ′)P (z′|θ′). The same

steps as for sampling z apply, giving

P (z′ = k|z = y, z−i, z
′
−i) ∝

n−yk + βY
n−·k + |L|βY

(n−dk + α).

Instead of training the complete model at once, a greedy
layer-wise training procedure is proposed. This leads to the
following equation for sampling label assignments z during
training of Fast-Dep.-LLDA:

P (z = y|w, z′ = k, z−i, z
′
−i) ∝

n−wy + β

n−·y + |V |β .

The model is guaranteed to converge to the optimum given
the chosen parameters. The greedy model may be viewed as
letting

∑
βY →∞which means the Dirichlet becomes a uni-

form distribution in case of symmetric βY . Greedy training
corresponds to choosing the most extreme parameter value
for βY , which leads to the second term vanishing from Equa-
tion 15 completely. Empirically, it is the case that on all tested
multi-label datasets the convergence is better using greedy
training than non-greedy training.

4.4.1 Online Fast-Dep.-LLDA (SCVB-Dep.)
The online version of Fast-Dep.-LLDA is called SCVB-Depen-
dency. For this, a method similar to the stochastic collapsed
variational Bayes (SCVB) method by Foulds et al. [23] is de-
veloped. The fully factorized variational distribution of Fast-
Dep.-LLDA is given by

q(z, z′, θ′, φ, φ′) =
∏
ij

q(zij |γij)
∏
ij

q(z′ij |γ′ij)
∏
j

q(θ′j |α̃j)

for tokens i and documents j.
In the equation, an additional variational parameter γ′ is in-
troduced for the topic assignments z′. However, computing
the updates for γ and γ′ separately would lead to unnecessary



computational effort. Instead an intermediate value λwyk is
computed, which corresponds to the expectation of a joint
occurrence of word w, label y and topic k which can be ex-
pressed in terms of an expectation of the indicator function
1, which is one if these values occur together and otherwise
zero: E[1[wi = w, yi = y, ki = k]], where i is the index of the
token.
For each token (the ith word in the jth document) λijyk is
calculated for label y and topic k, where during training λ
only has to be calculated for the labels of the document and
should be set to zero for all other labels.

λijyk :∝ λWijyλTijyk

λWijy :∝
Nφ
wij ,y + ηw

NZ
y +

∑
w ηw

λTijyk :∝
Nφ′

yij ,k
+ ηy

NZ′
k +

∑
y ηy

(Nθ′
jk + α),

where NZ is a vector storing the expected number of words
for each label. Nφ is the expected number of tokens for words
w and labels y in the whole corpus. Additionally, NZ′ stores
the expected number of tokens for each topic, Nφ′ is the ex-
pected number of tokens for labels y and topics k, andNθ′

j is
the expected number of words per topic, only for document
j.
Because greedy layer-wise training is used, the two parts of
the model can be trained separately whereas during testing
the full model has to be used. The first layer treats every
word as an input token and updates the word-label distribu-
tion based on λW , whereas the second layer treats each label
assignment as an input token and learns the label-topic dis-
tributions based on λT . Since the model is supposed to be
trained online, it is not possible to wait for the greedy algo-
rithm to learn the first layer before moving on to the second
layer. Therefore, the input probabilities of the second layer
are initialized by using the true labels. In this way, both lay-
ers can be trained simultaneously while not having to view
any document more than once.

4.4.2 Discussion
Fast-Dep.-LLDA can be trained using a batch method based
on Gibbs sampling or using an online method based on vari-
ational Bayes. The method was shown to perform especially
well on rare labels, due to the modelling of the label depen-
dencies and to be scalable to large datasets where it converges
much faster than the batch methods.

4.5 Nonparametric topic model
One shortcoming of Fast-Dep.-LLDA (Section 4.4) is that the
different frequencies of the topics and labels are not modeled,
i.e. they are given a symmetric prior. This problem is ad-
dressed by the hierarchical Dirichlet process (HDP), which is
used to train nonparametric topic models. HDP topic models
are nonparametric in the sense that the number of topics is au-
tomatically determined from the data. However, their main
advantage is the modeling of different topic frequencies, thus
leading to better representations of the data. Therefore, the
idea of labeled LDA can be extended to use HDPs instead of
standard LDAs.

HDP can be made supervised in the same way as LDA: by
assigning one topic to each label. Analogously to LLDA, the
modification of HDP for multi-label classification is called La-
beled HDP (LHDP) [8]. LHDP allows to take different label
frequencies into account. Since the number of labels is fixed,
a truncated HDP can be used.
As proposed by Li et al. [37], the sampling equations may
be rewritten as β∑

(Nw′k+β)
· X + Nwk∑

(Nw′k+β)
· X , where X

stands for the remaining part of the equation. The first part
can be stored and sampled from inO(1), since repeated sam-
ples from the same distribution are feasible inO(1), adding a
Metropolis-Hastings acceptance step to account for the differ-
ence with the updated counts. The second part only has to be
computed for the topics that occur with word w. Therefore,
the sampling complexity is reduced to amortized O(Kw),
where Kw is the number of topics that occur with word w.
Burkhardt and Kramer [12] employ the idea of Li et al.’s alias-
sampling of storing a stale part of the probability distribution
and sample from it in O(1), correcting the difference with a
Metropolis-Hastings acceptance step. However, in contrast
to the original alias-sampling, the hierarchical structure of
HDPs is exploited. Recall that the conditional probability for
topic k is given by:

P (z = k|rest) = P (z = k, u = 0|rest)+
P (z = k, u = 1|rest) + P (z = k, u = 2|rest).

The last term is usually sparse since it is only non-zero for all
topics that already have a table in the corresponding restau-
rant. The second part is dense, but changes rather slowly
since the overall topic distribution changes much slower than
the topic distribution within a document or label. Therefore,
instead of dividing the distribution according to the language
model term Nwk+β∑

w′ (Nw′k+β)
, it is divided according to the table

indicator u, thus yielding a sampler that runs in O(Kd) in-
stead of O(Kw) (in case of a standard two-level HDP).
The described method reduces the sampling complexity to
O(Kj), but, as can be inferred from Equations 9 and 11, qjw
depends on document j. This means the global topic distri-
bution has to be saved separately for every document. The
same is true for the alias-sampler by Li et al. [37], which puts a
restriction on the size of the used datasets, since a topic distri-
bution has to be saved for every single document. Therefore,
Burkhardt and Kramer [12] propose a method that instead
only uses a single global distribution.
The main idea is to assume for each topic that it does not exist
in the document and save the resulting distribution qew for an
empty pseudo document e. This can be understood as replac-
ing Equation 11 with Equation 9. In case a topic is sampled
from this distribution that exists in the current document, it
is discarded and a new one is drawn from the same distribu-
tion.

p̃jw(k, u′) := P (z = k, u = u′|rest)1[njk > 0] ,

where 1[njk > 0] is one if the number of tokens in document-
restaurant j associated with topic k is at least one and zero
otherwise. Accordingly, the normalization sum is

P̃jw =
∑
k

∑
u

p̃jw(k, u).

An amount ∆j needs to be subtracted from the normalization
sumQw, which is different for each document j and accounts



for the topics that are present in document j and would be
rejected if drawn from distribution q. It is called the discard
mass ∆ and defined as

∆j :=
∑

qek1[njk > 0].

∆j is computed in O(Kj) time and therefore does not in-
crease the overall computational complexity. The modified
normalization sum is accordingly given by Q̃jw = Qw −∆j ,
where Qw =

∑
qew.

The difference to the true distribution needs to be corrected
using Metropolis-Hastings (MH). The modified MH accep-
tance ratio is given by:

π =
P (z = t, u = ut|rest)
P (z = s, u = us|rest)

·

{
P̃jwp̃jw(s), if njs > 0

Qwq
e
w(s), otherwise

·{
1

P̃jw p̃jw(t)
, if njt > 0

1
Qwqew(t)

, otherwise

Overall, there seems to be a slight advantage of the non-
parametric method in large-scale experiments. Burkhardt [8]
finds that nonparametric methods fare best on larger datasets
where the number of labels is high. Given the right hyper-
parameters, the nonparametric method is able to perform
well in the supervised setting, especially on frequent labels
as compared to the parametric method, which performs bet-
ter on rare labels.

4.6 Nonparametric dependency topic model
The previous section introduced LHDP, a nonparametric
multi-label topic model, which can be trained on streaming
data, but does not make use of label dependencies. In this
section, stacked HDP (sHDP) is introduced [12], a model that
extends Fast-Dep.-LLDA to use HDPs so that we have a model
in which two HDPs are stacked on top of each other. In the
literature there exist two models with a similar structure, al-
beit they are just employed in unsupervised settings. First,
there is a variant of nested DPs, called coupled DP mixtures
(cHDP), by Shimosaka et al. [69]. This model groups the
documents into topics in addition to clustering them by la-
bels (or rather sub-topics, since the model is unsupervised).
cHDP is restricted in that each document belongs to exactly
one topic. Second, there is a hierarchical topic model called
nonparametric Pachinko allocation model (PAM), which as-
sociates a distribution over labels and topics with each docu-
ment so that each document may belong to several labels and
topics (see Fig. 6c). This, however, leads to a complex model
with a three-level HDP and having to save document-specific
distributions over topics as well as labels [38].
The third option is less complex than option two and does
not have the restriction of option one. It is a combination of
two two-level HDPs which are not nested as in option one, but
rather stacked. This means that the word-tokens are clustered
by labels and the labels are further clustered into different
topics. Therefore, the model is called stacked HDP (sHDP).
To make the model applicable in large-scale settings, the Alias
sampling method introduced in the previous section is used.
sHDP models a potentially infinite number of super-topics z′,
each of which is associated with a distribution over all sub-
topics or labels. Thus the same sub-topic may appear in mul-
tiple super-topics. This allows the modeling of topic corre-
lations. Additionally, sHDP is nonparametric, which allows

the number of sub- and super-topics to be automatically de-
termined from the data. Using Gibbs sampling each word-
token is associated with a sub-topic and a super-topic that
can be sampled independently and that only depend on the
variables in their respective Markov-blanket.
The graphical model of sHDP is shown in Fig. 6a. The gen-
erative process is defined as follows:

• A distribution θ′0 over super-topics is sampled from a
DP

• A distribution φ′0 over sub-topics is sampled from a DP

• For each super-topic k′:

– a distribution over sub-topics φ′k′ is sampled from
a DP with base distribution φ′0

• For each sub-topic k:

– a distribution over words φk is drawn from a sym-
metric Dirichlet distribution

• For each document:

– a distribution θ′ over super-topics is sampled from
a DP with prior θ0

– For each token in the document:
∗ a super-topic z′ is sampled from the document

specific distribution over super-topics θ′

∗ a sub-topic z is sampled from the distribu-
tion over sub-topics φ′z′ associated with super-
topic z′

∗ a word w is sampled from the word-topic dis-
tribution φz associated with sub-topic z

θ′0|b0, H ∼ DP (b0, H), θ′|b(0)
1 , θ′0 ∼ DP (b

(0)
1 , θ′0)

z′|θ′ ∼Mult(θ′)

φ′0|b0, H ∼ DP (b0, H), φ′|b(1)
1 , φ′0 ∼ DP (b

(1)
1 , φ′0)

z|φ′z′ , z′ ∼Mult(φ′z′)

w|φz, z ∼Mult(φz), φ ∼ Dirichlet(β)

We can see from the above that the model corresponds to two
two-level HDPs “stacked” on top of each other.
The sampling process is divided into two steps: First, z′i is
sampled conditioned on all z′j with i 6= j, and z. Second,
zi is sampled conditioned on all zj with i 6= j, z′i, and w. In
Equations 8 to 11 this is summarized as rest for brevity. Since
φ′ is sampled from a DP and φ is sampled from a Dirichlet
distribution, the equations for both steps are slightly different
in one term, namely Pwk.
When no alias-sampling is used, the sampling equations for
sampling the sub-topics k are equivalent to Equations 8 to 13.
When sampling the super-topics Equations 8 to 11 are used,
but Pwk is now given by:

Pwk =
∑
u′

P ′(z = w, u = u′|rest),

where w in this case corresponds to the sub-topic and k cor-
responds to the super-topic. P ′ is calculated using equations
8 to 11 disregarding the prior term given by 13. Pwk therefore
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Figure 6: The graphical model of sHDP compared to two alternative models, the coupled HDP (cHDP) model by Shimosaka et
al. [69] and the nonparametric PAM model by Wei Li [38]. sHDP is a simplified model with a more effective sampling procedure.

dataset #labels #documents
Reuters-215782[32] 90 12,902
bibtex [34] 159 7,395
delicious [75] 983 16,105
EUR Lex [41] 3,955 19,314
Ohsumed [68] 11,220 13,929
Amazon3[43] 13330 1,493,021
BioASQ4 28,863 14,200,259

Table 4: A list of commonly used multi-label text datasets.

corresponds to the summed probability mass for sub-topic w
given super-topic k.
The efficient sampling method introduced in the previous
section is applicable in Stacked HDP at the sub-level as well as
the super-level. At the sub-level the prior probability for the
sub-topics is expected to change slowly relative to the proba-
bility of the sub-topics inside a given super-topic restaurant.
If the actual probability estimates are used during training,
the Gibbs sampler has a tendency to get stuck in local min-
ima and less frequent labels are not sampled for many iter-
ations. To alleviate this problem, a uniform document-label
distribution is used during training similar to the inference
procedure for Fast-Dep.-LLDA.
Burkhardt and Kramer [12] report a prediction performance
for sHDP that is especially good on micro-averaged measures
which indicate the performance on frequent labels. This
shows that the model successfully models label frequencies
and prefers frequent labels during prediction as well.

5. COMMON MULTI-LABEL TEXT DATA-
SETS

An overview of some of the most common multi-label text
datasets is given in Table 4. The Reuters-21578 corpus con-
sists of news stories that appeared on the Reuters newswire
in 1987. The bibtex dataset is collected from the Bibson-
omy system, which is a social bookmarking and publication-
sharing system. Users store and organize bookmarks and
BibTeX entries by assigning tags. EUR Lex is a dataset
of legal documents concerning the European Union. It
is hand annotated with almost 4,000 labels. The Ohsumed

dataset5 is a subset of MEDLINE medical abstracts that were
collected in 1987 and that have 11,220 different human-
assigned MeSH descriptors. The Amazon dataset consists
of more than one million product reviews, annotated with
corresponding product categories. The original dataset
is available from http://manikvarma.org/downloads/XC/

XMLRepository.html under the name AmazonCat-13K. This
repository contains several more datasets of a similar na-
ture. The BioASQ dataset contains article abstracts from the
PubMed database. It is part of a yearly competition and up-
dated every year. Currently it consists of over 14 million ab-
stracts that are labeled with their corresponding MeSH cate-
gories.

6. PERFORMANCE EVALUATIONS
As multi-label classifiers, multi-label topic models are evalu-
ated using standard multi-label classification measures. As
suggested by e.g. Tsoumakas et al. [74], multi-label eval-
uation measures, e.g. the F-measure, can be computed as
2http://trec.nist.gov/data/reuters/reuters.html
3http://manikvarma.org/downloads/XC/XMLRepository.
html
4http://participants-area.bioasq.org/general_
information/Task7a/
5http://trec.nist.gov/data/t9\_filtering.html
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Figure 7: Illustration of the difference between Stacked HDP (left) and Dependency-LDA (right). The labels are drawn from the
document label set in both cases. Stacked HDP samples one topic for each word/label token, whereas Dependency-LDA samples
one topic for each label in the document label set. The white rectangles are sampled variables.

example-based or label-based measures. Label-based mea-
sures are further divided into micro- and macro-averaged
measures. Additionally, rank-based measures such as area
under the ROC curve are computed based on the ranking of
labels instead of the binary predictions.
It is also possible to examine the topic coherence of the
learned topics and the perplexity of the model, the most com-
mon measures in unsupervised topic modeling. This way, we
might identify topics that do not have enough training data or
where the training data is of low quality, independent of the
classification performance. Theoretically it is possible that a
label is predicted well by the model, but the topic coherence
is low and does not correspond to what a human annotator
would expect. This might be due to bad annotations that do
not fit the given corpus well.
The per-word perplexity is calculated from the ELBO as

exp

(
− 1

Nw

D∑
d

log p(d)

)
,

where Nw is the number of words in the corpus. The topic
coherence may be calculated following Srivastava and Sut-
ton [70] using the normalized pointwise mutual information
(NPMI), averaged over all pairs of words of all topics, where
the NPMI is set to zero for the case that a word pair does not
occur together. The NPMI for topic t is given as follows:

NPMI(t) =

N∑
j=2

j−1∑
i=1

log
P (wj ,wi)

P (wi)P (wj)

− logP (wi, wj)
,

whereN is the number of words in topic t, wi is the ith word
of topic t and P (wi, wj) is the probability of words wi and
wj occurring together in the test set, which is approximated
by counting the number of documents where both words ap-
pear together and dividing the result by the total number of
documents.
As an additional measure, Burkhardt and Kramer [15] intro-
duce the topic redundancy measure, which corresponds to
the average probability of each word to occur in one of the
other topics of the same model. The redundancy for topic k
is given as

R(k) =
1

K − 1

N∑
i=1

∑
j 6=k

P (wik, j),

where P (wik, j) is one if the ith word of topic k, wik, occurs
in topic j and otherwise zero, and K − 1 is the number of
topics excluding the current topic.

7. LIMITATIONS AND FUTURE RE-
SEARCH DIRECTIONS

Multi-label topic models have many advantages, but also
important limitations. For example, given datasets with a
limited amount of labels that are all sufficiently represented
in the training data, they cannot outperform simple Binary
Relevance classifiers using SVMs in terms of the multi-label
classification performance. Thus, pure classification scenar-
ios are not their purpose. They are applied when some-
thing beyond a suggested labeling is required such as semi-
supervised learning, a semantic interpretation of the learned
labels, a grouping of labels or explicit priors that are based
on label frequencies or human input.
Future research directions depend on this modeling flexibil-
ity that may allow to apply it in dynamic contexts where
changes in the training data and changes in modeling require-
ments are to be expected.
Possible future research directions include the following:

• In real-world applications, the label set is usually not
static. New labels may be added over time, whereas
others could become irrelevant. The capability of
adding and removing new labels over time has been ex-
plored in few papers [79], but has not reached a level
that allows use in real-world systems.

• Streaming data exhibits properties such as concept drift
and recurring concepts. For example, a label might be-
come less frequent during winter and more frequent in
summer. Such scenarios are not handled properly by
most available models.

• Another line of future work is to train topic models us-
ing active learning. In the case of text data streams it is
often difficult to label all incoming new documents by
hand. Active learning could help to actively select doc-
uments that differ from previously viewed documents
or where the algorithm has the least confidence dur-
ing labeling and automatically infers labels for the rest.
Semi-supervised extensions are also related to this field
and could help to train better models with less labeled
training data [17; 16].

• A generalization of the HDP is given by the hierarchi-
cal Poisson-Dirichlet process (HPDP), sometimes also
called hierarchical Pitman-Yor process: In this stochas-
tic process, an additional parameter a is the so-called
discount parameter. For a = 0 the process reduces to



the normal HDP. So far, only the standard HDP was em-
ployed for multi-label classification, investigations on
the effect of setting the parameter a to different values
are still pending. This could potentially help to model
label or topic frequencies that are even more skewed
and follow a power law distribution.

• The importance of averaging over different samples and
different estimators for multi-label topic models was in-
vestigated by Papanikolaou et al. [54]. Different meth-
ods of estimation and their effect on different evaluation
measures remain open for further investigation.

• Recently, topic models are increasingly trained using
neural networks [15], however, the research on multi-
label classification using neural network topic models is
still scarce [52]. This would enable the use of many re-
cent advances in deep learning such as convolutions, re-
current networks and different prior distributions. For
example, it does not increase the complexity of a neu-
ral network topic model when the assumption of a mix-
ture model, that all documents are mixtures of topics,
is dropped [70]. This can make the model more expres-
sive by allowing each document to be represented by
different combinations or products of topics. Addition-
ally, neural networks can more easily be extended to use
word vectors (i.e. pre-trained vector representations of
words that capture semantic and syntactic attributes of
the words) or other layer types that allow to take into
account word order and syntax.

7.1 Related Areas
Instead of using topic models to perform the classification
directly, they can also be used to train topic embeddings
which may subsequently be used as features in classification
[27]. They are also applicable in semi-supervised settings [17;
16] where unlabeled data improves the classification perfor-
mance. In addition to text, multi-label topic models can also
be applied on different data types not covered in this survey,
e.g., images [50]. Another important research question is the
visualization of topics [21], since the interpretability and us-
ability of a system depends largely on the way the results are
presented to users and analysts.

8. CONCLUSION
Multi-label topic models are applied to large-scale multi-label
text classification problems where interpretability and flexi-
bility of the model are important factors. This field, the rel-
evant background and applications are summarized in this
survey. The field is divided according to three different cate-
gories: Topic models are trained online or as a batch model,
they are parametric or nonparametric and they may model
label dependencies or not. For each of these categories, the
most important work is discussed and compared. Commonly
used datasets and evaluation measures are reviewed, limi-
tations discussed and possible research directions are pro-
posed. In conclusion, this survey gives an extensive overview
of all aspects of this emerging field and thereby demonstrates
the manifold possibilities and flexibility of the topic model
framework for the complex setting of multi-label classifica-
tion. Additionally, the number of open research questions
shows that there will likely be a lot more work in this area
in the near future.
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