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ABSTRACT

Deep learning methods have found increasing interest in re-
cent years because of their wide applicability for prediction
and inference in numerous disciplines such as image recog-
nition, natural language processing, and speech recognition.
Computational biology is a data-intensive field in which the
types of data can be very diverse. These different types of
structured data require different neural architectures. The
problems of gene expression and protein function prediction
are related areas in computational biology (since genes con-
trol the production of proteins). This survey provides an
overview of the various types of problems in this domain
and the neural architectures that work for these data sets.

Since deep learning is a new field compared to traditional
machine learning, much of the work in this area corresponds
to traditional machine learning rather than deep learning.
However, as the sizes of protein and gene expression data
sets continue to grow, the possibility of using data-hungry
deep learning methods continues to increase. Indeed, the
previous five years have seen a sudden increase in deep learn-
ing models, although some areas of protein analytics and
gene expression still remain relatively unexplored. There-
fore, aside from the survey on the deep learning work directly
related to these problems, we also point out existing deep
learning work from other domains that has the potential to
be applied to these domains.

1. INTRODUCTION
Deep learning has become increasingly popular in recent
years because of its uses in predictive applications, espe-
cially in the image and sequential domain [Goodfellow et al.
2016]. Deep learning models are generalizations of tradi-
tional machine learning models like linear regression and lo-
gistic regression. In particular, deep learning methods work
well when the data are richly structured in terms of the re-
lationships among different attributes. A classical example
of this type of data is the image domain. In such cases, deep
learning methods can leverage the network depth in order
to engineer features from the underlying data.

Biological data represent a natural candidate for deep learn-
ing algorithms because of the highly structured nature of
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such data. Some of the biological data occurs in the form
of sequences, others as complex folded compounds, and yet
others as microarrays. All these different types of data re-
quire different types of deep learning algorithms. The diver-
sity of deep learning methods in computational biology is
quite vast, which is inherited from the rich diversity of dif-
ferent types of biological data. In this survey, we examine
two related areas of computational biology, which are gene
expression and protein function prediction. These areas are
related because proteins are created using gene templates,
and the specific sequence in gene defines the eventual func-
tion of the protein. There is a rich diversity of data and
problem types that are frequently studied in this domain.
This survey assumes the basic knowledge of neural net-
works and deep learning as a prerequisite. Although a brief
overview of neural networks is provided, it is not the focus
of the survey. The primary focus is on how these models can
be used in the context of protein and gene expression data.
Where needed, some background is also provided on how bi-
ological concepts relate to the underlying machine learning
problems. We refer the reader to [Bishop 1995; Goodfellow
et al. 2016] for overviews on neural networks.

1.1 Types of Data Addressed in this Survey
Although diverse types of biological data exist, the focus of
this survey is primarily on protein data and genomic data.
As discussed in section 3.2, proteins in the human body
are manufactured from a base template inside the DNA.
Therefore, there is a natural connection between proteomics
and geonomics. Indeed, genes are almost always expressed in
order to create proteins with specific functions. Indeed, the
primary way in which DNA works is via the manufacturing
of different types of proteins. In particular, the following
aspects are studied in this survey:

• Gene expression: Genomic data are among the most
popular types of biological data. Typically, genes oc-
cur as sequences, which can be analyzed for struc-
ture and prediction. Genomic data also occur as mi-
croarrays, which have a somewhat different type of
2-dimensional structure. A multitude of applications
exist for such data, such as the discovering of various
types of diseases. This survey studies how specific as-
pects of the structure of genes are related to expressed
characteristics, such as the occurrence of diseases. For
example, gene microarrays are often used to perform
studies of the gene mutations that lead to various types
of cancers, tumors, and other diseases.

• Deep learning of proteins: The chemical properties of



biological compounds are closely related to their struc-
tures. For example, the function of a protein is closely
related to its structures. Proteins occur as complex
3-dimensional shapes that are leveraged for analysis
and prediction. The properties of proteins are often
associated with their structures and with functions.
Deep learning methods can help in relating biologi-
cal compounds to their structure and function. This
survey presents a discussion of deep learning methods
that predict the structures, functions, and shapes of
proteins together with the interrelationships between
these aspects.

• Connections to other types of data: In many cases, pro-
tein data and gene data do not occur in isolation, but
they may be annotated with various types of text and
may co-occur with other data types. Much of the sci-
entific literature of biomedical discoveries is available
in the form of text. In many cases, useful results are
obscured by the sheer volume of the publications avail-
able in the literature. Therefore, combining the anal-
yses of these large volumes of text with the insights
obtained directly from protein and gene data requires
a great deal of work. Furthermore, some types of ge-
netic data and protein data occur in combination with
various types of annotations that can be exploited for
analytics. Some of these methods are discussed in this
survey.

Important common property of most types of biological data
(such as proteins and genetic data) is that it has a rich
amount of structure. Proteins and genes are often modeled
as sequences or graphs, which are highly structured data
sets. Such data domains are naturally suited to deep learn-
ing algorithms. This survey provides a discussion of these
different types of applications along with the various types
of neural networks that support these applications.

1.2 Previous Surveys
Numerous surveys on machine learning methods in compu-
tational biology [Caragea and Honavar 2009; Wang et al.
2005; Schölkopf et al. 2004; Noble et al. 2004], although
many of these surveys were written before deep learning
methods became popular. Another point that we mention
is that computational biology is a diverse field, and a survey
of all the areas of computational biology would be worthy
of a book rather than a survey. It is often hard to provide
a focused overview of such a broad area (and also provide
specific insight and positioning of the works already done)
without focusing on specific domains. This survey is, there-
fore, focused on the subject area of protein data analytics
and gene expression. The following is an overview of related
surveys in the literature:

1. A survey on deep learning for biological data may be
found in [Angermueller et al. 2016]. This survey fo-
cuses on the basics of deep learning methods and also
the broad classes of biological problems that can be ad-
dressed by deep learning. In contrast, our survey takes
basic deep learning knowledge as a prerequisite and
builds on it in the context of proteomics and genomics.
Therefore, the article is arranged around protein ana-
lytics and gene expression applications; of course, the
broader principles of deep learning methods used for

various applications are provided to provide better in-
sights.

2. A review of deep learning methods on health informat-
ics is provided in [Rav̀ı et al. 2017]. However, this arti-
cle is restricted in its scope to health care-related top-
ics. Computational biology is a distinct field in its own
right, although it has significant overlaps with health
care. Health care is generally much broader, and it en-
compasses areas such as patient diagnosis prediction.
This is not the focus of this article.

3. An overview article [Webb 2018] in Nature provides
some interesting perspectives on deep learning meth-
ods for biology. However, this article is intended to be
an overview article in computational biology (which
provides an excellent bird’s-eye view), but it does not
provide details at the survey level. An important rea-
son for this is that it focuses rather broadly on compu-
tational biology, which makes it difficult to provide de-
tails in specific areas. Furthermore, the survey article
in [Webb 2018] is not specifically focused on genomic
or protein data.

4. An overview of deep learning methods for genomic
data may be found in [Yue and Wang 2018]. The fo-
cus of genomic data intersects with some aspects of
this review, although many aspects of [Yue and Wang
2018] are not directly related to this survey. Further-
more, [Yue and Wang 2018] do not discuss deep learn-
ing methods for proteomics.

It is noteworthy that deep learning is a relatively young field,
and many obvious avenues for using deep learning in compu-
tational biology have not been explored. Therefore, where
possible, the obvious avenues and directions for research in
using deep learning for protein analytics and genomics are
also pointed out in this survey. For this reason, this survey
should also be considered a position paper, which provides
numerous connections between known techniques and ex-
plores obvious avenues for research.

1.3 Organization of Survey
This survey is organized as follows. The next section pro-
vides an overview of the key classes of deep learning meth-
ods. Although it is impossible to provide a comprehensive
overview of the different types of deep learning methods,
we provide an overview of how important classes of neural
models relate to biological data. Section 3 offers a discus-
sion of deep learning methods for protein data. The con-
nections between protein data and gene data are discussed
in this section, as genes provide the blueprints for generat-
ing proteins. Numerous algorithms for protein interaction,
function, and structure are discussed in this section. Deep
learning models for genetic data are discussed in section 4.
The underlying deep learning methods include techniques
for predicting gene expression and clustering. Furthermore,
gene regulatory networks are also discussed in this section.
A summary and discussion is given in section 5.

2. AN OVERVIEW OF DEEP LEARNING

METHODS
In this section, we provide an overview of the basics of neural
networks and deep learning. The field of neural networks is



an extension of the broader field of machine learning. An
overview of the broader field of machine learning may be
found in [Bishop 2006].
All neural networks are essentially computational graphs con-
taining nodes that can perform computations. Such com-
putational graphs are usually directed, acyclic graphs, and
they are often organized in a layer-wise fashion. All nodes
are either input nodes, hidden nodes, or output nodes. The
input nodes simply accept the input to the machine learning
problem, whereas the output nodes output the final predic-
tions. The number of input nodes is equal to the number of
attributes d in the data set, whereas the number of output
nodes is equal to the number of attributes to be predicted.
For example, for a regression or classification problem, there
might be only one output. The intermediate nodes accept
inputs from other nodes and propagate them to the next
layer of nodes after performing computations on them. Such
nodes are considered hidden because their computations are
not part of the input or output (although they can be ex-
plored if needed). The input nodes do not perform any
computations, but they simply transmit their inputs to the
next layer. The nodes are connected to one another with
weights on the edges, and the learning of the weights in a
data-driven manner provides the primary mechanism with
which a neural network is able to model prediction func-
tions. The weights on edges are modified whenever there
are errors in the predictions of outputs, and the weights are
modified in order to reduce this error.

Each node in a computational graph typically performs two
operations in succession. The first is a simple linear compu-
tation on its d inputs, which is followed by the application
of an activation function. In other words, the output of a
node in a computational graph is as follows:

y = Φ(
d∑

i=1

wixi) (1)

The function Φ(·) is typically the sigmoid, tanh, or the ReLU
function. These functions are defined as follows:

Φ(z) = 1/(1 + e−z) (sigmoid function)

Φ(z) = (e2z − 1)/(e2z + 1) (tanh function)

Φ(z) = max{z, 0} (Rectified Linear Unit)

Another useful function is the softmax activation function,
which is a generalization of the sigmoid function to multi-
ple outputs. The softmax activation function has k inputs
zi . . . zk, and k outputs o1 . . . ok, which can be interpreted
as probabilities:

oi =
exp(zi)∑k

j=1 exp(zj)
, ∀i ∈ {1 . . . k} (2)

The softmax activation function is used when the prediction
is a set of k probabilities corresponding to k possible out-
comes. These types of situations are common in multiway
prediction problems.

It is also possible to have no activation function, which cor-
responds to a linear layer. Linear activation functions are
often used in the output nodes of a neural network, when
the final output is a numerical value. In fact, it is possible
to simulate the linear regression model with such a node.
In this model, we have a single-layer network with a single
output node, where the output y is obtained by applying a
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Figure 1: A single-layer network with one computational
node for linear regression

combination of a linear function and an activation function
to the inputs. An example of a neural network with a single
output node is illustrated in Figure 1. Note that the input
nodes do not perform any computations beyond transmit-
ting the data, and it is only the output nodes that perform
the computation. The output is then compared to an ob-
served output, and a loss function is used to quantify the
error of that example. The weights of the neural network
are modified to minimize the error. The gradient of the loss
function is used to update the weights. With the trained
weights, one can then predict outputs for unseen examples.
For example, when we use no activation, a single numerical
output, and a squared loss, the resulting model is referred to
as least-squares regression. In this case, for inputs x1, . . . xd,
the single output is given by ŷ =

∑d

i=1 wixi, where xi is the
ith input and wi is the weight of the edge joining the ith
input to the output. Then, the loss function of least-squares
regression for the input-output pair (x, y) is as follows:

L(x, y) = (y − ŷ)2 (3)

The losses over all input-output pairs in a data set S are
aggregated to yield the final result. Therefore, the overall
loss is computed as L =

∑
(x,y)∈S

L(x, y).

When the outputs have 0/1 values, the sigmoid activation
function can be used to predict a probability of the binary
prediction. Depending on whether the output is 0 or 1, the
negative logarithm of the probability of 0 or 1 is used as
the loss. This model is exactly the same as that of logistic
regression in machine learning. Therefore, simple cases of
neural networks correspond to well-known classification and
regression models in machine learning. The softmax acti-
vation is used with a logarithmic (cross-entropy) loss in the
case of multi-way classification.

Neural networks become much more powerful when the nodes
are arranged in multiple layers. In this case, the outputs of
some nodes feed into other nodes, and the overall model
becomes extremely powerful. Complicated functions of the
input can be learned with this approach. Most of this power
is gained as a result of the nonlinear activation functions in
the intermediate layers. An example of a multi-layer net-
work is illustrated in Figure 2. As in the case of the single-
layer network, the inputs are x1 . . . x5, and the single output
is denoted by ŷ. Depending on the nature of the applica-
tion, the network might have multiple outputs. This model
is referred to as a feed-forward network. The depth of a net-
work increases its power, and the success of deep networks
for modeling has led to the term “deep learning.” Most of
the time, one is using the features of a specific datum (e.g.,
a protein molecule, a gene sequence, and clinical readings)
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Figure 2: A multi-layer network with nodes structured in
layers.

to make a prediction of a specific property (e.g., a molecu-
lar property, a genetic property, or a disease). This is the
classical approach used in supervised learning.

In unsupervised learning, it is also possible to have out-
puts that are identical to the inputs. The loss function is
designed by summing up the squared error between the pre-
dicted outputs and observed outputs (which are the same as
the inputs). This approach corresponds to the reconstruc-
tion of a data point, which is the case in an autoencoder.
These types of unsupervised learning methods are useful for
applications such as clustering. In many applications, such
as gene expression data, clustering methods are useful for
grouping genes with similar properties together.

2.1 Importance of Structured Architectures
Many types of data, such as biological sequences and graphs,
are inherently structured. For example, proteins can be rep-
resented as sequence data, and in some cases, they can also
be conceptually represented as interaction networks. In these
cases, the use of a straightforward feed-forward network does
not yield optimal results. In such cases, it is helpful to de-
sign architectures that are specifically tailored to these data.
There are two primary types of architectures that are suited
to the kinds of structured data that occur often in biology.
The two most common architectures used for processing bi-
ological data correspond to recurrent neural networks and
convolutional neural networks.

2.1.1 Recurrent Architectures for Sequences

Recurrent neural networks are useful for biological data that
occur as sequences. Many of the types of data that occur
often in computational biology are sequential data with vari-
able lengths. Examples include gene sequences and protein
sequences. Biological compounds, which are graphs, can
also be flattened into sequences. These types of data of-
ten have repeating (or recurrent) patterns in them, and the
goal of the architecture is to learn these recurrent patterns.
Therefore, recurrent architectures [Elman 1990; Hochreiter
and Schmidhuber 1997] use the notion of a time-layered net-
work, in which each position in the sequence is associated
with a layer of the architecture. For example, an amino acid
sequence with length k will have k time layers in which each
layer receives an input from one position. All the layers
in the architecture are identical, and they receive feedback
from earlier layers. Each time layer in the network has an
input, a set of hidden nodes, and an output. The number
of time layers in the network depends on the number of ele-
ments in the input sequence, and therefore the architecture

of the neural network depends on the length of the input
sequence. Such networks have the following properties:

1. The different temporal layers share parameters because
of the fact that the model at each time-stamp is iden-
tical. Note that it is important for the time layers to
share parameters to ensure a fixed number of parame-
ters because the number of time layers is input-specific.

2. The recurrent neural network can accept variable length
inputs. This is because each time layer allows a fixed
number of inputs, and the number of time layers de-
pends on the length of the sequence. The requirement
of variable-length inputs is quite common in the case
of sequence data.

An example of a recurrent architecture is shown in Figure 3.
Note that the loop in Figure 3(a) is of a conceptual nature,
as it is unrolled into multiple temporal layers. The unrolled
version of the network is shown in Figure 3(b).

2.1.2 Convolutional Neural Networks in Biology

The main application of convolutional neural networks in
computational biology occurs for various types of proteins
that are naturally expressed as graphs. Convolutional neu-
ral networks [Krizhevsky et al. 2012; LeCun et al. 1998]
use a 3-dimensional spatial arrangement of the units, and
sparse activations, referred to as convolutions, are used to
propagate activations from layer to layer. Each layer in a
convolutional neural network has spatially arranged activa-
tions, and these actions are individual pixels at the input
layer. Furthermore, each layer of the network has multiple
activation maps, and these different maps are viewed as fea-
tures. In the input layers, these different maps correspond
to channels such as red, green, and blue (RGB). A typical
input image might be of size 32 × 32 × 3, where the first
two dimensions correspond to the spatial size, and the third
dimension corresponds to the depth. Convolutions are done
with the use of filters that have smaller dimensions, but the
same number of maps as the layer. For example, a filter in
the input layer might be of size 5 × 5 × 3. Multiple filters
might be associated with a layer, which create different fea-
tures in the next layer. A convolution operation is a dot
product between all the elements of a filter and a particular
position in the image. Therefore, the number of “pixels”
(or features) in the spatial representation of the next layer
is equal to the number of valid positions at which a filter
can be convolved with the spatially arranged features in a
particular layer. A particular filter is associated with a sin-
gle feature map in the next layer. Therefore, the number of
filters in a layer determines the number of feature maps in
the next layer. The convolution operations are often paired
with a ReLU activation function, which has become the most
common approach since the work in [Krizhevsky et al. 2012].
In some convolutional networks, pooling operations are also
used, although this practice has become increasingly rare
in recent years. A pooling operation outputs the maximum
value over a spatial region of features. The pooling operation
reduces the size of the spatial footprint of a layer because
a spatial region is replaced with a single feature. In cases
where pooling is not used, it is important to use strided con-
volutions, where the convolution is not done at each position
in the spatial footprint, but the spatial positions are sepa-
rated by an integer value. This integer value is referred to
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as the stride parameter. The final set of layers are not spa-
tially arranged and are referred to as fully connected layers.
These layers are similar to the ones used in a conventional
feedforward network. An overview of the basic structure of
a convolutional neural network is provided in [Krizhevsky
et al. 2012]. An example of a convolutional neural network
that uses only convolutions and no pooling is illustrated in
Figure 4. Note that a ReLU activation is placed at the end
of each spatial layer.
Convolutional neural networks are used widely for image
data, and their use in the biological domain has been lim-
ited. Nevertheless, some obvious avenues where convolu-
tional neural networks can be used in computational biology
are noted in this survey. An important point is that many
biological compounds can be represented as graphs, and the
analyses of these graphs have tremendous applications. In
the graph representation of a chemical compound, each node
is a simpler unit of the compound, and a bond is a connec-
tion between the nodes. In recent years, numerous methods
have been proposed for extending the use of convolutional
neural networks to graphs [Duvenaud et al. 2015; Kipf and
Welling 2016a; Kipf and Welling 2016b; Henaff et al. 2015],
even though they were originally proposed for image data.
At least some of these works [Duvenaud et al. 2015; Henaff
et al. 2015] have been shown to have applications in molec-
ular biology.

3. PROTEIN DATA
In this section, we discuss methods that are used for deep
learning of non-genomic biological compounds. These in-

clude areas of computational biology such as proteomics, in
which proteins are analyzed for their structure and function.
However, genes are not completely independent of proteins.
Indeed, the building of proteins is deeply controlled by genes.
Therefore, the study of proteins is deeply connected to that
of genes in many ways. Since the research in protein ana-
lytics is closely related to that of genetics, it is important
to understand these different areas and their relationships
with one another.

3.1 What is Proteomics?
Proteins form the bedrock of most structures and functions
in living organisms. The word “protein” comes from the
Greek word “proteos,” which means “first place.” They
take on many complex functions in the human body, includ-
ing acting as enzymes, hormones, and catalysts, performing
various forms of signalling and even providing the physi-
cal structure of muscles. Functions, such the transportation
of oxygen in the body are performed by proteins, such as
Hemoglobin. Defects in the structure of proteins can lead
to corresponding problems in their functioning, and a vari-
ety of diseases are known to be caused by defects in proteins.
Clearly, the structure of proteins plays a critical role in their
functioning, and therefore, a natural avenue for the use of
deep learning is to predict the function of proteins from their
structure.

3.2 Connections of Proteomics and Genomics
Genetic data correspond to deoxyribonucleic acid (DNA)
and ribonucleic acid (RNA), which are constructed from
nucleotides. Nucleotides are monomers made of three com-
ponents, which correspond to a 5-carbon sugar, a phos-
phate group, and a nitrogenous base. Therefore, DNA and
RNA are chemically quite different from proteins. DNA is a
double-stranded, stable, sequence of nucleic acids in which
the main sugar is deoxyribose, whereas RNA is a single-
stranded, unstable sequence of nucleic acids, in which the
main sugar is ribose. For example, instead of amino acids,
DNA are composed of the nucleic acids, which are adenine
(A), guanine (G), thymine (T), and cytosine(C). Similarly,
RNA uses roughly similar bases, except that thymine is re-
placed with uracil (U). The DNA occurs in the nucleus in
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23 pairs of chromosomes, containing a total of 70,000 genes.
Each gene comprises a long sequence of the aforementioned
four bases. In spite of the significant chemical differences
between genomic data and proteins, genes contain the in-
structions required for building proteins. For example, a
protein is created by combining amino acids, and the order-
ing and choice of the amino acids is controlled by the gene
for the protein. RNA transfers the genetic code from the
nucleus to the ribosomes to make proteins. In addition to
proteins, amino acids are created in ribosomes. RNA is less
stable than DNA precisely because of the types of functions
it has to perform, which require frequent reorganization.
What is the connection between DNA, RNA, and proteins?
The main point is that DNA lies inside the nucleus of a
cell, whereas proteins and amino acids are synthesized out-
side the nucleus (in the ribosomes present in the cytoplasm).
RNA serves as the carrier of this information from within
the nucleus to the cytoplasm. Messenger RNA plays the
role of transcription, where it copies the DNA code from
the nucleus, using the same sequence while replacing (T)
with (U) and bringing it to the ribosomes, where the pro-
teins are manufactured. Each subsequence of three posi-
tions in an RNA strand brought to the ribosome is referred
to as a codon, and it codes for an amino acid. Therefore,
there are 43 = 64 possible codons, although multiple codons
might correspond to the same amino acid. Furthermore,
some codons are designated to mark the beginning or end
of a protein sequence, and they do not specifically code for
amino acids. As a result, there are only 20 distinct amino
acids (instead of 64). All proteins represent a sequence of
these 20 amino acids. An overview of the entire process of
transcription and translation from genes to proteins is illus-
trated in Figure 5.
Proteins are, therefore, represented as long sequences of
20 (possibly and likely repeating) symbols in the FASTA
format, 1 and DNA/RNA are represented as repeating se-
quences of four symbols. Each monomer (amino acid) in
the protein sequence is also referred2 to as a residue. The
process of creating a protein by a genetic transcription is
referred to as gene expression, and the entire set of proteins
contained in an organism is referred to as the complete pro-
teome. The human proteome is known to contain about
20,000 proteins, each of which is created by a different gene.

1https://en.wikipedia.org/wiki/FASTA_format
2In general biochemistry, a monomer within a chain of a
polysaccharide, protein, or nucleic acid is referred to as a
residue. Therefore, an instance of adenine (A) might be
residue in an RNA chain, an instance of glucose might be
a residue in a complex carbohydrate like glycogen, and an
amino acid is a residue in a complex protein.

The above number does not include the splicing variants of
a protein produced by the same gene, including which the
number rises to more than 90,000 proteins. It is also note-
worthy that many genes do not produce proteins, but they
produce RNA for other tasks as the final end product. Pro-
teins have different functions, depending on the sequence of
amino acids. Furthermore, proteins with similar functions
often interact with one another at specific contact points in
a network of protein-protein interactions.
In reality, the structure of proteins is much more compli-
cated than sequences, as there is a 3-dimensional structure
of these molecules. Proteins often show a folding behav-
ior, which is critical to their structures and functions. For
example, enzymes fit into substrates using a “lock-and-key
mechanism,” which is heavily dependent on the shape of the
underlying proteins. Therefore, the problem of inferring the
structures of proteins has been of significant interest in the
broader literature. The primary structure of a protein cor-
responds to its sequence information, which comprises the
identity and order of the amino acid residues. The secondary
structures are caused by folding patterns stabilized by in-
termolecular hydrogen bonds; these correspond to α-helices
and β-sheets. The tertiary structure corresponds to how
the proteins react to the aqueous environment surrounding
them. In some cases, particular portions of the protein (the
hydrophilic side) prefer to face toward the aqueous environ-
ment, whereas other portions (the hydrophobic side) prefer
to face away from the aqueous environment. Other proteins
are apathetic to the aqueous environment surrounding them.
The connections between DNA and proteins lead to inter-
esting lines of research because many diseases are caused by
defects in proteins, which in turn arise because of unusual
variants in DNA [Alipanahi et al. 2015].

3.3 Protein­Protein Interaction Networks
An important point here is that most proteins do not act in
isolation in carry out their functions. Rather, most proteins
act in concert via interacting with one another in the form of
protein-protein interaction networks (PPI networks) [Szklar-
czyk et al. 2014; Von Mering et al. 2002]. At its core, these
are networks in which the nodes correspond to proteins, and
the edges correspond to interactions among them. Protein-
protein interactions correspond to physical contacts between
two or more protein molecules, and they enable the creation
of large interaction networks.
An important problem in computational biology is that of
protein-protein interaction and function prediction. Numer-
ous conventional machine learning methods have been used
for protein-protein interaction prediction [Qi et al. 2006].
Three typical types of problems are observed in this domain:

1. In the prediction of protein functions from interac-
tions, we are given a network of protein-protein inter-
actions, and information about the functions of some
subsets of the proteins. Using this information, we
would like to predict the unknown functions of pro-
teins.

2. In the prediction of molecular modules [Chen et al.
2013], one is trying to isolate parts of the protein-
protein interaction network that often function as a
single unit. Often, such portions have large levels of
interconnectivity. This problem is closely related to



that of clustering the protein-protein interaction net-
work.

3. In protein-protein interaction prediction, we are al-
ready given some feature representations of proteins
(which might include their function or sequence in-
formation) and interactions between some subsets of
proteins. Given this information, one would like to
predict interactions among them.

The last of these problems is quite fundamental, and it is
serves as the basis of both building PPI networks and also
the basis for predicting the structure of proteins. In the fol-
lowing sections, we will discuss each of the above problems.

Protein Function Prediction from Protein­Protein
Interaction Networks

To explain the relationship between protein-protein inter-
action and protein function, we provide a portion of an in-
teraction network from [Vazquez et al. 2003] in Figure 6.
Here, the nodes correspond to the proteins, and the edges
correspond to the interactions among proteins. The func-
tions of some subsets of the proteins are known, whereas
others are not (and shaded gray in Figure 6). An impor-
tant point is that protein-protein networks show the prop-
erty of homophily, wherein proteins with similar function
are often connected. Using this fact, one can infer that the
protein YNL127W has the function of budding, cell polar-
ity, and filament formation in Figure 6. Note that this type
of problem can be reduced to that of collective classifica-
tion in machine learning, wherein some subsets of the nodes
in a network are labeled and other labels are inferred from
them [London and Getoor 2014]. The basic idea in these
methods is that the connected nodes in the network have
either similar or related functions, which can be inferred
in a data-driven manner by propagating (function) labels
from specified nodes to unspecified nodes. Although collec-
tive classification methods can be used for problems beyond
protein-protein interaction networks, some of the proposed
networks have been explicitly designed to work with PPI
data [Bogdanov and Singh 2010; Bilgic and Getoor 2008;
Desrosiers and Karypis 2009; Wu et al. 2014]. Most of these
methods either extract neighborhood features for modeling
a classification problem [Bogdanov and Singh 2010; London
and Getoor 2014; Neville and Jensen 2003], or they use la-
bel propagation methods [Bilgic and Getoor 2008; London
and Getoor 2014; Zhu et al. 2003]. Some of the methods
even use explicit and implicit edges for prediction [Xiong
et al. 2013]. [Deng et al. 2003] use Markov random fields,
which can be viewed as probabilistic variants of neural net-
works. An overview of many of the classification methods
used for protein function prediction with PPI network data
is provided in [Sharan et al. 2007]. The similarity of func-
tions between connected proteins has frequently been used
to predict function [Schwikowski et al. 2000; Vazquez et al.
2003]. [Vazquez et al. 2003] design an energy function based
on the similarities between proteins to make predictions.

Although the vast majority of techniques for function predic-
tion use traditional machine learning techniques[Bogdanov
and Singh 2010; Desrosiers and Karypis 2009; Qi et al. 2006;
Sharan et al. 2007; Vazquez et al. 2003], recent progress
has been made on the use of deep learning methods, es-
pecially when the function is related to a 3-dimensional
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Figure 6: A portion of a protein-protein interaction networks
[Vazquez et al. 2003]

structure [Wang et al. 2017]. A natural approach to mod-
eling protein-protein interaction networks with deep learn-
ing is to create node embeddings of the interaction net-
work with the use of structure of both the network and the
protein itself [Grover and Leskovec 2016; Kipf and Welling
2016a; Hamilton et al. 2017a; Huang et al. 2017]. Indeed,
some of these embedding methods [Kipf and Welling 2016a;
Hamilton et al. 2017a] have been shown to perform very
well for various collective classification settings, and some
of them even take attributes into account [Huang et al.
2017] (as is common in PPI interaction networks). Further-
more, a graph convolutional network model has been pro-
posed [Kipf and Welling 2016b] for predicting the link inter-
actions among the nodes in a network. However, the meth-
ods in [Kipf and Welling 2016a; Kipf and Welling 2016b;
Hamilton et al. 2017a] have mostly been designed in the
context of social networks; they have not yet been tested
in the computational biology (or PPI interaction/function
prediction) settings. Most likely, their use in the PPI in-
teraction prediction setting would require further modifica-
tions. As such, these methods represent a natural avenue for
further research in the area. An overview of various types
of node-embedding techniques may be found in [Hamilton
et al. 2017b].

Integrating Sequence Information for Protein
Function Inference

One can predict protein function from sequence and struc-
ture [Lee et al. 2007]. The main difference is that the net-
work of interactions is not used in this case, although some
of the methods extract the protein-protein interaction in-
formation and use it to develop features. A key point is
that a substantial similarity in the underlying sequences is
often used directly or indirectly in order to discover inter-
actions [Liao and Noble 2003]. Often, there are subtle sim-
ilarities in the sequence of amino acids when two proteins
interact. Consequently, sequence-to-sequence alignment and
similarity algorithms, such as BLAST and FASTA [Li and
Homer 2010], have remained the methods of choice. An
overview of machine learning methods for predicting pro-
tein functions from sequence and structure may be found
in [Watson et al. 2005].



Numerous methods have also been proposed for predicting
protein function from sequences [Cao et al. 2017; Kulmanov
et al. 2017; Liu 2017; Murvai et al. 2001; Tang et al. 2018].
Some of this work uses traditional machine learning tech-
niques, such as support vector machines [Tang et al. 2018]
to perform the learning. This approach cannot use sequence
information, and therefore it only uses dipeptide composi-
tion for creating features. This type of composition infor-
mation is, nevertheless, sufficient to predict specific types
of functions, such as finding whether a protein is a growth
hormone.

An early method [Murvai et al. 2001] on the use of neu-
ral networks extracts features with the use of BLAST-based
similarity [Li and Homer 2010] on the sequences and then ap-
plies a feedforward network on the extracted features. This
type of approach of hand-crafted feature extraction is not in
line with what one normally expects from neural networks.
In most types of neural networks, one normally expects fea-
ture engineering to be done in an automated way.
The work in [Cao et al. 2017] is particularly interesting be-
cause it treats both the protein sequence and the functions
of a protein as a “language.” The protein sequence is re-
ferred to as “ProLan”, and the function of the protein is
referred to as “GOLan.” The ProLan language simply seg-
ments the sequence of amino acids into a set of “words” to
create a sentence, whereas “GOLan” creates a sentence of
ordered identifiers based on protein functions. Given the
sentences in the two languages, it is a relatively simple mat-
ter to perform the translation using a neural machine trans-
lation model. This model is not conceptually too different
from the machine translation models used in systems3, such
as Google Translate. At the most basic level, this model
hooks up two recurrent networks, one for each of the two lan-
guages. The first network encodes the protein language into
an internal representation of the neural network, whereas the
second network converts this internal representation into a
sentence of the second language. The work in [Kulmanov
et al. 2017] takes a somewhat different approach wherein it
treats the problem as that of multilabel classification, where
each possible function is a binary label of the classification
problem. In this particular case, protein-protein interaction
data were also used for classification purposes. The work
in [Liu 2017] also takes the approach of using the protein se-
quence as input and the label as the output in the recurrent
network.
There are several possible lines of research in function pre-
diction. One of the most interesting avenues of research,
which was briefly suggested in [Liu 2017], is the possibility
of generating new proteins with specific functions with the
use of hooked recurrent encoder-decoder architectures (just
like a machine translation system). The training pairs could
be proteins with the same function. Then, proteins with
similar functions to a given protein P could be generated by
inputting the protein P to the encoder, and generating the
symbols of the generated protein by the decoder, just like
a neural machine translation model. In a sense, the input
protein provides the context to the generator.

Another direction of research has to do with how sequence
information and protein-protein interaction information can
be integrated to infer protein function. It is noteworthy that
most of the techniques for sequence-based function classifica-

3http://translate.google.com

tion either exclusively use sequence information, or protein-
protein interaction features are extracted by using methods
such as BLAST [Murvai et al. 2001]. Using hand-crafted
features is not a natural approach from the perspective of
neural network design. In practice, one can use the re-
cently proposed network-embedding techniques [Grover and
Leskovec 2016] (to apply them to the PPI interaction net-
work) and combine them with the recurrent neural network
techniques [Cao et al. 2017; Kulmanov et al. 2017; Liu 2017]
to create an integrated and end-to-end framework for com-
bining the sequence and the PPI information. The main
challenge would be in combining the features of the embed-
ding technique with the recurrent neural network for pre-
diction. In this context, neural networks are ideal because
they allow the fusion of the features from different inputs in
a seamless way.

Molecular Modules in Protein­Protein Networks

An important class of tasks in protein-protein interaction
analytics tries to findmolecular modules from protein-protein
interaction networks [Bader and Hogue 2003; Nepusz et al.
2012; Spirin and Mirny 2003]. These methods perform clus-
tering on the nodes of the protein-protein interaction net-
work to identify closely related sets of nodes. Such sets are
referred to as molecular modules, and they are densely con-
nected among themselves but sparsely connected with the
remainder of the network. Such modules are typically of two
types, as pointed out in [Spirin and Mirny 2003]. The first
type comprises protein complexes, such as splicing machin-
ery and transcription factors. The second type comprises
dynamic functional units, such as signaling cascades and
cell-cycle regulation. At the most basic level, one can use off-
the-shelf community detection algorithms [Fortunato 2010]
in order to identify clusters of nodes. One challenge is that
the underlying protein complexes (clusters) are often over-
lapping [Nepusz et al. 2012]. Therefore, it is important to
use clustering techniques that are robust to noise and over-
lap among clusters. This can be achieved to a large extent
by using ensemble techniques [Asur et al. 2007]. However,
most of these techniques use conventional machine learning
methods rather than deep learning. However, deep learning
is natural approach to use for this task because one can em-
bed the nodes of a PPI network in multidimensional space.
Once the embedding has been done, it can be used in con-
junction with any off-the-shelf clustering algorithm. As a
specific example, the original node2vec work proposed for
embedding nodes uses PPI networks as one of the test data
sets [Grover and Leskovec 2016]. Another approach [Tian
et al. 2014] uses a sparse autoencoder in order to discover
the embeddings of nodes of a PPI network. This approach
works with the n×n similarity matrix S of an n-node graph.
In this case, the idea is to treat S as a data set containing n
instances, and each instance corresponds to the similarity of
a node with other nodes. The similarity matrix is obtained
by dropping the low-weight edges of the adjacency matrix
and then normalizing the edges. The edges are normalized
so that each edge (i, j) is normalized by the geometric mean
of the weighted node degrees of nodes i and j. The sparse au-
toencoder is implemented by using a sparsity penalty in the
hidden nodes. This encourages the hidden nodes to take on
zero activation values. The resulting embeddings can then
be clustered with any off-the-shelf algorithm. Considerable
scope exists in integrating other types of data into the anal-



ysis, and an overview of such methods is found in [Chen
et al. 2013]. Such integration methods are easily done in
deep learning because inputs from multiple sources can be
fused in a neural architecture.

3.4 Inferring Protein­Protein Interaction and
Folding Structure

An important problem in the deep learning of proteins is
that of predicting the 3-dimensional folding structure of pro-
teins. The amino acid sequences comprising proteins reg-
ulate its 3-dimensional structure, depending on where the
residues make contacts with one another. An important
intermediate step in the prediction of the structure is the
prediction of both intra-protein residue-residue interaction
as well as inter-protein residue-residue contacts between a
pair of interacting proteins (i.e., inter-protein contact pre-
diction) [Zeng et al. 2018; Zhou et al. 2017]. Inferring these
contact points can help in inferring the 3-dimensional struc-
ture of the protein.
An important point is that the functioning of a protein is
heavily dependent on the shape taken on by the protein. For
example, the specificity of enzymes to substrates is heavily
dependent on the shape of the protein because the 3-d shape
of the enzyme decides which substrates it binds to. The ba-
sics of the protein folding problem are discussed in [Dill et al.
2008]. Because of the importance of the problem, a biennial
global competition was established for measuring and en-
couraging progress in the field in 1994. This competition is
referred to as Community Wide Experiment on the Critical
Assessment of Techniques for Protein Structure Prediction
(CASP), and an overview of some of the early work may be
found in [Moult 2005]. This competition has catalyzed some
of the well-known techniques in the field.
The precise shape of a protein is hard to (fully) observe
at the molecular level, and one usually only has informa-
tion about the sequence of amino acids comprising the pro-
tein. Although the shape can be partially observed using
techniques, such as X-ray crystallography and electron mi-
croscopy, the reality is that these methods are extremely
expensive and time-consuming. The precise shape of the
protein depends on how this sequence of amino acids in-
teracts with one another. Given the importance of shape
in predicting the function of proteins, it is not particularly
surprising that the problem of protein shape prediction has
taken on a significant level of importance. In each case, one
is assuming that the input is the sequence corresponding to
the protein, and the output is the folding structure of the
protein. Given that this approach is based on sequences,
it is not particularly surprising that some of the prominent
methods tackle this problem with the use of recurrent neu-
ral networks [Baldi et al. 1999]. [Baldi et al. 1999] use a
recurrent neural network to predict the secondary structure
associated with each position in the sequence. The prob-
lem is therefore reduced to a classification problem at each
position, where one of three possibilities corresponding to α-
helix, β-sheet, or coil is predicted. A bi-directional recurrent
neural networks was used for prediction in this work. The
work in [Spencer et al. 2015] propose methods for ab initio
secondary structure prediction. Such methods are useful for
predicting the tertiary structure of proteins. This is because
the predictions about the secondary structure also feed into
the predictions about the tertiary structure.

A closely related problem to that of the prediction of the

structure of a protein is the problem of contact map predic-
tion. In other words, the goal is to predict the interactions
from one another. The shape of a protein is decided by the
distance between all possible amino-acid residue pairs of the
3-dimensional protein structure. This distance structure is
a simplified variant of the actual 3-dimensional structure.
This is precisely the information captured in the protein
contact map, which is a 2-dimensional matrix of distances,
and the size of the matrix depends on the number of amino
acid residues. An advantage of this type of approach is that
it is more amenable to machine learning techniques. A pro-
tein contact map represents the distance between all the
possible amino acid residue pairs of a 3-dimensional protein
structure using a binary 2-dimensional matrix. A common
simplification is that the matrix is assumed to be binary. In
other words, the value of the matrix is assumed to be 1 if
the distance is below a particular threshold, and 0, other-
wise. This assumption turns the distance matrix into a sim-
ilarity matrix, and the problem can also be modeled with
link prediction techniques [Lü and Zhou 2011; Martin et al.
2004] in machine learning if a subset of similarities is al-
ready known. A neural network for predicting interaction
sites from sequences is proposed in [Fariselli et al. 2002].
This approach uses a straightforward neural network (i.e., a
feedforward network), in which the contiguous windows of
11 amino acids (residues) are used as the input to determine
whether or not the central unit (among these 11 residues)
is in contact with another protein. Each of the 11 inputs is
one-hot encoded as a vector of size 20 to account for the 20
possibilities of amino acids at each position.

The contact maps between proteins provide useful informa-
tion in order to infer the shape. Many of the methods of
3-dimensional structure prediction break up the problem
into two parts. First, the distances between all the pairs
of proteins are predicted. Subsequently, these distances are
used to predict the 3-dimensional structure with a different
model. Some techniques also compute the angles between
the bonds to better capture the 3-dimensional structure.

[Di Lena et al. 2012] use a 2-dimensional bidirectional re-
current neural networks for contact map prediction. In this
approach, coarse contact maps are predicted between sec-
ondary structure elements. The 2-dimensional nature of the
structure helps in integrating spatial structure in the predic-
tion process. The recurrent network is used to process the
input sequence corresponding to the residues in the protein.
However, instead of raw residues, various features are ex-
tracted, such as residue features, coarse features, and align-
ment features. The coarse features are themselves outputs
of a coarse predictive phase. [Wang et al. 2017] use convo-
lutional neural networks for predicting the structure of pro-
teins in terms of the bidirectional contact maps. The recent
idea of deep residual networks is used for this purpose [He
et al. 2016]. Although it is more common to use recurrent
neural networks rather than convolutional neural networks
for protein structure prediction, the work in [Wang et al.
2017] shows that it is possible to use 1-dimensional convo-
lutions for protein structure prediction.

Recently, a deep learning method referred to as AlphaFold
was proposed in [Evans et al. 2018]. The work in [Evans et
al. 2018] predicts both the distances between pairs of residues
as well as the angles between pairs of residues. A neural
network was trained to predict distances between the pro-
tein residues. These distances could be used to estimate



the closeness of a proposed protein structure to the cor-
rect answer. This was achieved with a separate neural net-
work. These probabilities were then combined into a score
that estimates how accurate a proposed protein structure is.
The AlphaFoldmethod provided competitive performance to
state of the art in the CASP competition.

A related problem is to examine proteins in pairwise fash-
ion and predict whether two proteins are from the same
fold. The model uses the pairwise protein features as input,
including information on sequence, family, and structural
features. This problem is referred to as the fold recognition
problem. The work in [Jo et al. 2015], refers to is as DN-
Fold, uses an ensemble of neural network and conventional
machine learning methods to achieve state-of-the-art perfor-
mance. The underlying models were feed-forward networks
containing between three and five layers.

Integrating Text with PPI Prediction

One problem in the computational biology domain is that
much of the work on protein interaction and function pre-
diction precedes the widespread use of machine learning and
deep learning techniques. Complicating this fact is the issue
that there are literally thousands of proteins, and the pair-
wise possibilities for interactions might range in the mil-
lions; simply speaking, knowledge is distributed across a
vast amoiunt of literature, and much of what we know is
incomplete. As a result, the known interactions and func-
tions of proteins are often not organized in a systematic way.
One of the approaches for being able to find protein-protein
interactions is to integrate text mining with the previous
tasks [Cohen and Hersh 2005; Donaldson et al. 2003; Simp-
son and Demner-Fushman 2012]. For example, the basic
idea for finding protein-protein interactions is to tag pairs
of proteins in a sentence together when they are known to
have an interaction. Subsequently, information extraction
methods can be applied to untagged text in to discover the
relationships among them. Most of the current techniques
focus on using vanilla machine learning techniques, although
the approach is very much suited to deep learning. In par-
ticular, the work in [Hsieh et al. 2017] shows how one can
combine deep learning techniques, such as recurrent neural
networks, with these models in order to discover relevant in-
teractions. Most of the analysis is at the sentence level. As
a specific example, given in [Hsieh et al. 2017], consider the
following sentence: “STAT3 selectively interacts with Smad3
to antagonize TGF-β signaling.” Given this type of sentence
(in which the protein tokens have already been isolated), a
recurrent neural network should be able to infer that the
three proteins (STAT3, Smad3, and TGF-β) interact with
one another. This can be easily achieved by using a recur-
rent neural network in which the input corresponds to the
sequence of words in the sentence, and two of the proteins
in the sentence are marked, The output is a binary result,
depending on whether or not these pairs of proteins inter-
act. In this particular case, the classification methodology
would need to be applied three times to identify whether or
not each of the three pairs of proteins interact with one an-
other. Convolutional neural networks have also been used
for this purpose [Peng and Lu 2017], although they have
not achieved state-of-the-art performance on the interaction
prediction task.

4. GENE EXPRESSION DATA
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Figure 7: Capturing differential gene expression via microar-
rays

As discussed earlier in this survey, genes are frequently ex-
pressed in the form of the types of proteins they create. The
sequence of any protein that is created is extracted from
underlying DNA through the process of RNA transcription.
Therefore, there is a natural connection between genomics
and proteomics. An overview of machine learning methods
for genomics may be found in [Libbrecht and Noble 2015].

A technology that allows biologists and machine learning sci-
entists to analyze gene expression data is that of microar-
rays. So what is a DNA microarray? The way in which
microarray chips work is that single strands of portions of
the synthetic DNA are put on the chip, and when single
strand of denatured DNA from human subjects (or normal
control DNA) are added in, these extracted strands bind
to those synthetic DNA strands containing complementary
base pairs. Typically mixtures of different types of DNA are
added at the same time, and they are dyed in order to be
able to detect how much they bind to each position on the
chip (containing a complementary strand). For example, the
DNA microarray may contain “features” for both mutated
DNA and normal DNA, and the control DNA would bind
to the normal positions, whereas the DNA from the sub-
ject with a disease might bind to the mutated DNA. Each
chip might contain thousands of short, single-strand DNA
for both normal DNA and mutated DNA. This type of ap-
proach can also be used to do population studies where one
determines the fraction of the population with a medical
condition that also has a specific type of mutation. Because
of the ability of putting a large number of features on the
microarray chips (comprising large portions of the human
genome), it has become possible to do large-scale studies
with microarray data.

It is noteworthy that DNA microarrays have diverse appli-
cations, and one of these many applications is gene expres-
sion analysis (which is also a focus of this survey). A DNA
microarray is able to perform an experiment in which each
point represents the ratio of expression levels under two dif-
ferent experimental conditions. For example, some genes
in a cell could be expressed more than others, as a result
of which they will produce single-strand messenger RNA to
produce proteins to perform the function corresponding to
that gene. The other genes will be switched off, and will not
produce messenger RNA to create functional proteins. At
any given moment in time, only a subset of the genes will be
producing the messenger RNA, which can be detected using
microarray technology. In a gene profiling experiment, the
activity levels of thousands of genes are simultaneously mon-
itored. RNA from cancerous cells and normal cells might be
also simultaneously introduced, and the differential expres-



sion with respect to the different genes will tell us which
genes are active toward the disease. The messenger RNA
strands are then reacted with an enzyme (such as reverse
transcriptase) to produce the (single strand) complementary
DNA, referred to as cDNA. These cDNA strands are dyed
and reacted with the chip. The key point is that the (dyed)
cDNA strands from the cancerous and normal cells will bind
in a differential way to the single strands of different genes
on the chip. Therefore, the color of a particular position on
the DNA microarray will tell us the expression level of that
gene for the two conditions (e.g., normal and cancerous).
This overall process is illustrated in Figure 7. Similarly, one
can compute expression levels over different conditions, such
as different choices of drug treatments, by using indepen-
dent experiments with different microarray chips. Another
possibility is that each experiment could correspond to the
gene expression of a particular patient, and the control DNA
could correspond to (known) normal DNA. Therefore, by us-
ing n patients, one would have n sets of expression levels.

One repeats this process for n different experiments, which
correspond to various patients or conditions for the same
set of d genes. Therefore, each experiment corresponds to a
data point, and the genes correspond to the features. As a
result, the data for gene expression typically correspond to
an n × d matrix, where each of the n rows corresponds to
a single experiment (using a different microarray chip), and
the d elements of that row contain the ratio of the expression
levels under two conditions for all the d genes being tested.
The value of d can be extremely large, and therefore, the
problem is high dimensional. In many cases, it is possible to
have situations where the number of dimensions is greater
than the number of records, which leads to problems asso-
ciated with overfitting. The features are often transformed
by applying a logarithm function to each feature and then
normalizing the data so that the Euclidean norm of each of
the d columns is 1. In some settings, the normalization is
done so that the Euclidean norm of each of the n rows is
1. The specific choice of normalization also depends on the
application at hand.

Several machine learning applications could be associated
with this type of data set. For example, clustering can be
used to group similar genes [Gupta et al. 2015]. However,
most of the known clustering methods for gene expression
data do not use deep learning methods, and a survey on this
can be found in [Jiang et al. 2004]. From an application-
centric perspective, the classification problem is more in-
teresting, where one is trying to classify genes based on an
unknown property using the gene expression levels with la-
beled training data. The pioneering work in this area was
proposed in [Brown et al. 2000], who used a support-vector
machine in order to perform the classification of a gene ex-
pression data set with a yeast data set. Later work showed
how this type of approach could be used for various diagnos-
tic purposes, such as cancer classification [Khan et al. 2001;
Guyon et al. 2002] or the discovery of pathogenic genetic
variants [Quang et al. 2014]. The basic principle proposed
in [Guyon et al. 2002] was to repeat an experiment for each
patient to compute their expression levels for the different
genes. In the following, we provide an overview of deep
learning techniques for gene expression data.

4.1 Unsupervised Learning with Gene Expres­
sion Data

In the problem of clustering gene expression data, one inter-
esting characteristic is that it is possible to pose the problem
in a number of different ways depending on the application-
specific scenario. For example, for an n× d gene expression
matrix, one should want to cluster the dimensions when one
wants to find similar genes, and one should cluster the rows
when one wants to find similar experimental conditions or
patients in terms of gene expression.
In the deep learning domain, the popular approach is to
use an autoencoder [Aljalbout et al. 2018; Goodfellow et al.
2016] to embed the individual rows (or columns) into a fea-
tured engineered space. [Gupta et al. 2015] proposed to
use denoising autoencoders to perform this feature engi-
neering and to cluster similar genes. A broader overview
of some of the clustering methods for deep learning is pro-
vided in [Ching et al. 2018]. A denoising autoencoder is like
a normal autoencoder, except that additional noise is added
to the input of the autoencoder to train the autoencoder in
the presence of corruption [Vincent et al. 2008]. By teaching
the autoencoder how to remove the effects of possible data
corruption, the results are often of higher quality. The gen-
eral idea of using autoencoders is helpful in extracting the
latent features that can be used for a variety of tasks [Way
and Greene 2017; Titus et al. 2018a]. In particular, [Titus
et al. 2018a; Titus et al. 2018b] apply the approach to DNA
methylation data to extract the latent features of particular
methylated genes that are relevant to breast cancer. The
work uses a variational autoencoder [Kingma and Welling
2013], which can also be used for unsupervised clustering.

4.2 Regression with Gene Expression Data
A recent line of work predicts gene expression levels with
the use of regression methods [Chen et al. 2016]. The idea
is to reduce the cost of gene expression profiling by being
able to infer a subset of them.

One can technically view this problem as that of having an
n×d data matrix in which only a portion of the data matrix
is fully specified. For simplicity, consider the case in which
the first d1 < d genes are landmark genes for which all n
expressions are fully specified, and the remaining (d − d1)
expressions are fully specified in the training data, which
corresponds to the first n1 experiments/trials. These (d−d1)
target gene expressions are missing in the test data. It is
often the case that the value of d might be tens of times
greater than that of d1. Consider the case in which the
gene expression matrix has entries denoted by xij , where i
is the index of the experiment (which was collected using
a DNA microarray chip such as expression ratio between
a particular patient and a control) and j is the index of a
particular gene feature. Therefore, the idea is to predict the
target features xij (for j > d1) from the landmark features
xij (for j ≤ d1).

xij = fj(xi1, . . . xi,d1) ∀j ∈ {d1 + 1, . . . , d} (4)

Here, fj(·) is the jth function being modeled to predict
the jth target gene. Note that we do not need models for
j ∈ {1 . . . d1} because these are landmark genes for which
expression levels are already available.

In the simplest case, the function f(·) could be a simple
linear function that uses a parameter vector wj for modeling:

xij = wj · [xi1 . . . xi,d1 ] + bj ∀j > d1 (5)

The weights can be learned using the training data, and



predictions can be performed on the test data.

However, using a linear regression model is too simplistic
in most cases. [Chen et al. 2016] use a feed-forward neu-
ral network for this type of profiling. In this approach the
expression levels for only about 1000 landmark genes were
profiled, and those of the remaining target genes were in-
ferred, which corresponded to nearly 21,000 genes. Here,
the key point is that since this is multi-task regression prob-
lem, an output needed to be included for each of the 21,000
output possibilities. Therefore, the hidden layer encoded
latent features that were relevant to all of the predictions.
The effect of various other factors, such as histone modifica-
tion on gene expression have also been studied [Singh et al.
2016]. Histone modification refers to the modifications oc-
curring to histone proteins via processes like methylation,
and phosphorylation. [Singh et al. 2016] propose a deep
learning model for this task, and it is shown to outperform
competing methods like support vector machines.

4.3 Classification with Gene Expression Data
It is noteworthy that even though machine learning and neu-
ral networks were invented in the eighties and nineties, the
use of gene expression data for machine learning picked up
only in the late nineties and at the turn of the century. Like
neural networks, the use of gene expression data was also a
relatively new technology, and it took a while for the two
fields to come together. In the early years, the classifica-
tion methods were not necessarily based on neural networks
but were on simpler techniques, such as support vector ma-
chines [Brown et al. 2000; Guyon et al. 2002; Dudoit et al.
2002]. As pointed out in [Dudoit et al. 2002], a lot of the
early work did not use neural network methods. This is not
particularly surprising because the success of deep learning
is a more recent phenomenon, and the larger successes in
the area occurred after 2010. One of the earliest works that
used artificial neural networks in the context of gene expres-
sion data was proposed in [Khan et al. 2001], and this work
showed how to separate the tumors into different diagnos-
tic categories. However, most of these earlier works did not
yield particularly exciting results, which cannot be matched
by existing machine learning methods.

Where deep learning methods really score over traditional
machine learning techniques are cases where good feature
engineering is a possibility. In this sense, the work in [Fakoor
et al. 2013] uses sparse autoencoders [Bengio et al. 2007;
Coates et al. 2011] to extract features from gene expression
data. Note that this is an unsupervised feature extraction
approach, and therefore, it can be used in cases where the
amount of unlabeled data is significant, but there are few la-
beled data points. The use of an autoencoder was preceded
by a phase of principal component analysis for better results.
For actual classification, straightforward softmax regression
was used in [Fakoor et al. 2013]. This general idea of using
an autoencoder and then following it up with a classifier on
the extracted features has been repeated in a few places. For
example, [Danaee et al. 2017] also extracts features from mi-
croarray data for classification. However, it used a denoising
autoencoder instead of a sparse autoencoder.

A number of recent researchers have also focused on super-
vised learning. For example, [Chen et al. 2015] demonstrate
how supervised learning can be used in these models. This
approach is more like a conventional neural network classi-
fier rather than an unsupervised feature engineering method

that uses an autoencoder. The technique in [Yousefi et al.
2017] shows how deep learning models can be used in order
to predict clinical outcomes from gene expression profiles.

4.4 Inferring Gene Networks and Their Be­
havior

In the beginning of this survey, we discussed the connections
between genes and proteins, as well as the capturing of in-
teractions among proteins with protein-protein interaction
networks. In this section, we discuss work in the field of
gene regulatory networks, which is a more general concept.
A gene regulatory network contains a set of DNA, RNA,
proteins, or their complexes as nodes, and the interactions
as the edges among them. Recall from our earlier discussion
that proteins are constructed using DNA/RNA using the
process of transcription or translation. In addition, proteins
also serve the function of “turning on” genes, which results
in the creation of more proteins. These created proteins
might result in further interactions and so on. Therefore, the
edges in the network could represent direct chemical inter-
actions among genes, or they could correspond to processes
by which genes affect each other. Clearly, gene networks
could be potentially very complex and could involve loopy
nonlinear interactions over time. As a result, the tempo-
ral dynamics of such networks are sometimes modeled with
differential equations [Chen et al. 1999]. However, in prac-
tice, simplified models, such as Boolean models, are often
used [Akutsu et al. 1999; Shmulevich et al. 2002].

Most of the time, the gene regulatory network is not directly
available, and one has to convert the gene expression data
into regulatory networks. This process of inferring gene reg-
ulatory networks from gene expression data and other types
of data is also referred to as reverse engineering. [Rubiolo
et al. 2015] discover a gene regulatory network from tem-
poral expression profiles by using a pool of multiple neural
networks with temporal delays at the inputs. Each neural
network discovers the potential regulator of a target gene
profile at the output. [Rubiolo et al. 2017] discuss how ex-
treme learning machines can be used in to infer gene regula-
tory networks. A popular approach to reconstruction of gene
regulatory networks is the use of bidirectional [Biswas and
Acharyya 2018] or hierarchical [Kordmahalleh et al. 2017]
recurrent neural networks. Both of these methods use time-
delayed temporal dynamics, which is a natural candidate for
neural network modeling. Broader reviews of neural mod-
els for gene regulatory network reconstruction and analysis
are provided in [Biswas and Acharyya 2016; Delgado and
Gómez-Vela 2018].

The inference of gene regulatory networks is closely related
to the dynamics of the interactions between genes. Recur-
rent network approaches to model the dynamics of gene reg-
ulatory networks are discussed in [Hu et al. 2005; Maraziotis
et al. 2007]. Note that recurrent networks present a natural
approach for modeling temporal dynamics because of their
ability to capture interactions over time. However, more
recent studies [Smith et al. 2010] have suggested that recur-
rent neural networks do not necessarily outperform carefully
designed multilayer neural networks. Therefore, it is still an
open question as to whether recurrent neural networks are
the tool of choice in this setting.
Another early line of work was to use Bayesian networks [Fried-
man et al. 2000] to analyze gene expression data. A Bayesian
network can be viewed as a special case of a neural network



which is considered a probabilistic graphical model. A discus-
sion of the modeling of gene expression networks with prob-
abilistic graphical models is provided in [Friedman 2004]. In
particular, a Bayesian network uses probabilistic computa-
tions across different nodes of the network. This approach
shares some similarities with the principle of probabilistic
Boolean networks [Shmulevich et al. 2002].

5. SUMMARY
This paper provided a survey of algorithms for protein and
genomic analyses with the use of deep learning methods.
Proteomics and genomics are closely related fields, given
that the blueprints for proteins are contained in genomic
sequences. DNA serves as the blueprint for genes, which
are transcribed into messenger RNA. These messenger RNA
then provide the data needed for the creation of proteins.
Consequently, many of the problems that arise in the two
fields are similar. For example, both genes and proteins can
be arranged into network structures based on the interac-
tions between individual components. In the case of pro-
teins, these networks are referred to as protein-protein in-
teraction networks; analyzing them provides insights about
protein function.
In the case of genes, a number of models have been pro-
posed for both supervised and unsupervised learning. In
supervised learning, the key models relate to the use of pre-
dicting gene expression levels. In addition, gene expression
data are used in the context of classification and clustering.
Finally, the inference of gene networks and their behavior
provides insights into the important properties of genes and
their functions.
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