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ABSTRACT

Missing data is a well-recognized problem in large datasets,
widely discussed in the statistics and data analysis liter-
ature. Many programming environments provide explicit
codes for missing data, but these are not standardized and
are not always used. This lack of standardization is one of
the leading causes of the subtle problem of disguised missing
data, in which unknown, inapplicable, or otherwise nonspec-
ified responses are encoded as valid data values. Following
a brief overview of the problem of explicitly coded missing
data, this paper discusses sources, consequences, and detec-
tion of disguised missing data, including two real-world ex-
amples. As the first of these examples illustrates, the conse-
quences of disguised missing data can be quite serious. The
key to its detection lies in first, recognizing disguised miss-
ing data as a possibility and second, finding a sufficiently
informative view of the data to reveal its presence.

1. THE PROBLEM OF MISSING DATA

Missing data is a common problem with a variety of causes,
several of which are discussed briefly in subsequent sections
of this paper. In the specific case of survey sampling, this
problem has been studied fairly extensively [12; 13; 14; 17;
22] and can arise from poorly designed questionnaires (e.g.,
inapplicable or ambiguously worded questions), errors made
by the interviewer (e.g., omitted questions), or nonresponse
by the interview subject (e.g., subject can’t remember or
refuses to answer). Problems of missing data are especially
prevalent in large datasets assembled from several sources.
There, missing data arises either because these sources ex-
hibit different degrees of completeness in collecting the same
type of data, or because they collect different types of data,
causing missing values to occur in blocks—sometimes quite
large ones[17, p. 7]—when the combined dataset is formed.
Because it severely complicates some types of data analy-
sis, there is a large literature dealing with the treatment of
missing data [8; 9; 10; 11; 12; 13; 14; 15; 17; 18; 19; 21; 22].

1.1 Two real data examples

The U.S. Food and Drug Administration’s Adverse Event
Reporting System (AERS) [23] documents reports of adverse
reactions to prescription drugs. This database is assembled
from many sources, including drug manufacturers, health-
care professionals, and consumers. It consists of multiple
files, organized by Individual Safety Reports (ISR’s) that
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list the adverse events experienced, the drugs taken, and
a limited amount of additional demographic and reporting
data. Updates are released quarterly, each typically con-
taining ~ 50,000 ISR’s. The specific portion of the AERS
database considered here consists of the twelve quarters be-
tween the first quarter of 2001 and the fourth quarter of
2003, including 597,074 ISR’s. As is typical of large med-
ical databases, the fraction of missing data in the AERS
database varies strongly with the variable considered. For
example, for the twelve quarters of data just described, gen-
der is 7.2% missing, age is 25.8% missing, and weight is
42.0% missing. Part of the reason for the high fraction of
missing weight data is that this variable was not included in
the demographic data collected for the AERS database prior
to second quarter 2002. Reasons for the significant fractions
of missing age and gender data are not clear, but it is worth
noting that these fractions vary significantly with the re-
porting source. For example, expedited reports from the
manufacturer, generally associated with unexpected and/or
severe adverse events, exhibit 21.3% missing age data, while
direct reports, not submitted through a drug manufacturer,
exhibit 31.1% missing age data.

Another representative clinical data example is the liver
transplant database from the National Institute of Diabetes
and Digestive and Kidney Diseases (NIDDK), which sum-
marizes a seven-year prospective study of 1563 liver trans-
plant candidates [25]. This database consists of 88 data files,
each describing a set of related medical characteristics. One
of these files is the short-term follow-up dataset, consisting
of 7582 records with 88 fields per record. Of these fields,
34 correspond to real variables with missing data fractions
ranging from zero to almost 100%. One source of miss-
ing data that is often unavoidable in clinical datasets is
censoring, resulting from the finite duration of the study
that generated the data. For example, patients receiving
transplants late in the NIDDK study do not have complete
follow-up data, as the study ended before the dates of some
of their follow-up visits. Another factor that contributes to
missing data in clinical databases is the cost or difficulty of
obtaining certain results, particularly if they are not rou-
tine clinical measurements. Further, these factors can be
strongly source-dependent, as noted in the preceeding dis-
cussion for the AERS database, leading to highly heteroge-
neous patterns of missing data. Finally, another source of
missing data in the NIDDK database is the fact that differ-
ent variables can correspond to measurements of the same
or closely related quantities by different methods. For exam-
ple, the documentation accompanying the NIDDK database
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notes that cyclosporine (CSA) and FK506 measurements are
complimentary: if one value is present, the other is missing.
Further, CSA level can be measured in four different ways,
each corresponding to a separate variable. Hence, 5 of the
34 real-valued fields in the short-term follow-up dataset con-
stitute a mutually exclusive set and, although some of them
are almost completely missing individually, the aggregate of
the five is only about 16% missing.

1.2 Consequences of missing data

The point of the two examples just presented is not to criti-
cize these databases—indeed, missing data fractions as high
as 60% have been reported in some studies [13]—but rather
to illustrate the character of the missing data problem com-
monly encountered in practice. As to its consequences, Hor-
ton and Lipsitz [11] list three important problems caused by
missing data. One is the fact that many procedures cannot
handle explicitly coded missing data, forcing us to modify
our analysis as discussed in Sec. 1.3. Generally, these modi-
fications fall into one of three classes: omission of incomplete
records, imputation of missing data values, or computational
modifications to explicitly deal with missing data values.
Omission of incomplete records effectively reduces our sam-
ple size, leading to a loss of statistical efficiency, one of the
other two problems discussed by Horton and Lipsitz. For
example, note that most univariate data characterizations
exhibit variances that decay inversely with the sample size.
Thus, reducing the effective sample size correspondingly re-
duces the precision of our data characterizations. In cases
where the missing data values differ systematically from the
non-missing data values, substantial biases in our analysis
results can arise, the third problem noted by Horton and
Lipsitz. As a specific example, Mistiaen and Ravallion show
that reported incomes from the Current Population Survey
for the United States are more likely to be missing at higher
incomes, causing the average income to be underestimated
[19]. This phenomenon is referred to as non-ignorable miss-
ing data and is discussed further in Sec. 3.5.

1.3 Dealing with missing data

There are at least four different ways of dealing with explic-
itly coded missing data: deletion, single imputation, multi-
ple imputation, and iterative procedures. Deletion strate-
gies simply omit some or all of the missing data records,
depending on the details of the analysis considered. For
example, Little and Rubin [17] distinguish between com-
plete case analysis, based only on complete data records,
and available case analysis, based on all records that are
sufficiently complete for the analysis under consideration
to be undertaken. The difference between these analysis
strategies can be important in datasets with many fields per
record since available case characterizations involving fewer
variables (e.g., univariate characterizations like means and
standard deviations) will generally be based on larger data
subsets than those involving more variables (e.g., multiple
regression analysis). For small fractions of missing data,
these deletion strategies are used quite extensively.

For larger fractions of missing data, or in other cases where
deletion strategies are deemed undesirable, one common al-
ternative is imputation, where missing data values are esti-
mated on the basis of those that are available [11; 17; 21;
22]. Single imputation strategies provide a single estimate
for each missing data value. Popular examples are hot deck
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imputation where missing values are replaced by responses
from other records that satisfy certain matching conditions
(e.g., missing income values estimated by the recorded in-
come value for another survey respondent from the same
Zip code with similar age and educational background), and
mean imputation where missing values are estimated by the
mean of appropriately selected “similar” samples. A dis-
advantage of single imputation strategies is that they tend
to artificially reduce the variability of characterizations of
the imputed dataset. This observation provides the moti-
vation for multiple imputation strategies where several (typ-
ically ~ 20) different imputed datasets are generated and
subjected to the same analysis, giving a set of results from
which typical (e.g., mean) characterizations and variability
estimates (e.g., standard deviations) can be computed.
Both deletion-based strategies and single imputation strate-
gies may be regarded as filters in the sense of John, Kohavi
and Pfleger [16], because they yield modified datasets that
are analyzed by standard methods without modification.
Multiple imputation strategies are somewhat more involved
but still do not require modification of the underlying anal-
ysis procedures and are non-iterative in nature. In contrast,
iterative approaches analogous to the class of wrappers [16]
can also be developed for missing data. The best-known of
these methods is the Ezpectation-Maximization (EM) algo-
rithm, which formalizes the following ad hoc strategy [17, p.
166]: first, impute the missing data values; next, estimate
data model parameters using these imputed values; then,
re-estimate the missing data values using these estimated
model parameters and repeat, iterating until convergence.
This approach is very general and has been applied to a
wide range of missing data problems [17, Ch. 8], [18; 22].

2. DISGUISED MISSING DATA

Key to the use of any of the missing data treatment strate-
gies just described is the recognition that certain data values
are missing. The problem of disguised missing data arises
when missing data values are not explicitly represented as
such, but are coded with values that can be misinterpreted
as valid data. As the examples discussed in Sec. 3 demon-
strate, this misinterpretation can be responsible for signifi-
cant biases in our analysis results.

More formally, disguised missing data may be defined as
follows. First, consider an m X n matrix X of data ob-
servations whose i, j-element is X;; for ¢ = 1,2,...,m and
j=1,2,...,n, and let X denote any available metadata for
X. Define the corresponding missingness array as the m xn
matrix M whose ¢, j-element is M;; = 1 if data observation
Xi; is missing and M;; = 0 if observation X;; is not missing.
In cases of explicitly coded missing data, the metadata X
defines a special code * such that M;; = 1 if and only if
Xi; = =. Disguised missing data is defined as any situation
in which the missingness array M cannot be reconstructed
unambiguously from the given data array X and any avail-
able metadata X. In fact, missing, incomplete or incorrect
metadata is a leading cause of disguised missing data, as the
next example demonstrates.

2.1 The diabetes dataset

A specific example of disguised missing data is provided by
the Pima Indians diabetes dataset from the UCI Machine
Learning Archive. The datasets in this archive are publicly
available from the website:
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No. Name Variable

NPG  Number of times pregnant
PGL  Plasma glucose concentration
DIA Diastolic blood pressure

TSF Triceps skin fold thickness
INS Serum insulin concentration
BMI Body mass index

DPF  Diabetes pedigree function
AGE  Age in years

0O Utk W

Table 1: The eight clinical predictor variables included in
the Pima Indians diabetes dataset.

http://www.ics.uci.edu/~mlearn/MLRepository.html

and they have been adopted widely in the machine learn-
ing community as benchmarks for comparing methods. The
Pima Indians diabetes dataset contains records for 768 fe-
male members of the Pima Indian tribe, each giving values
for the eight variables listed in Table 1 together with the
patient’s diagnosis as diabetic or nondiabetic.

Although the metadata for this dataset indicates that there
are no missing data values, Breault [3] notes that five of
the variables listed in Table 1 exhibit biologically implausi-
ble zero values, suggesting that this metadata is incorrect.
For example, Fig. 1 shows a plot of the recorded diastolic
blood pressure values for the 768 patients included in the
dataset, with 35 zero values represented as solid circles. It
is clear in retrospect that these values cannot be correct
and must therefore be treated as missing, but Breualt notes
that many published analyses have overlooked this point
and have simply used the data values as recorded. Indeed,
he briefly summarizes the results of approximately 70 pre-
vious analyses, most of which treated the dataset as though
it were complete. This oversight is extremely serious since
some of the missing data fractions are quite high: triceps
skin fold thickness, a measure of obesity, is approximately
29.6% missing while serum insulin concentration is approxi-
mately 48.7% missing. Since 500 of the 768 patients included
in this dataset are non-diabetic, simply classifying everyone
as non-diabetic achieves a classification accuracy of 65.1%,
and several of the examples discussed by Breault exhibit
classification accuracies barely greater than this (the low-
est reported accuracy from his list of published examples is
67.6%). Not surprisingly, Breault was able to obtain gener-
ally better results by omitting the disguised missing values,
even though this complete case analysis reduced the effective
sample size from 768 patients to 392. Further illustrations
of the consequences of these disguised missing data values
on various other analyses are given in Sec. 3.

2.2 Sources of disguised missing data

Disguised missing data has a variety of different causes. De-
liberate fraud is one obvious possibility, but other less ob-
vious causes occur more commonly in practice. Ironically,
one source of disguised missing data is the use of form-based
electronic data entry systems with rigid edit checks, included
to prevent data entry errors. A specific example described
by Adriaans and Zantige [1, p. 84] illustrates the problem:
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Figure 1: Diastolic blood pressure values from the UCI Pima
Indian diabetes dataset; the solid circles represent the 35
biologically implausible zero values included in the dataset.

Recently, a colleague rented a car in the USA.
Since he was Dutch, his post-code did not fit the
fields of the computer program. The car hire rep-
resentative suggested that she use the zip code of
the rental office instead.

When a standard code for missing data is either unavailable
or its use will cause real or perceived difficulties for data
entry personnel (e.g., angry words from a supervisor), data
values are likely to be entered which are formally valid (i.e.,
exhibit the correct data type, satisfy edit limits, etc.) but
factually incorrect as in the example just described.

The ultimate source of most disguised missing data is prob-
ably the lack of a standard missing data representation. For
example, in the SAS software environment, one of the most
widely used clinical data analysis platforms, missing data
values are represented with the symbol “.” and computa-
tional procedures typically handle incomplete data records
by either omitting individual missing values (e.g., for means
and standard deviations) or omitting incomplete variables
(e.g., in regression procedures). Conversely, the S-plus soft-
ware environment, along with its freeware counterpart R, are
two other popular, general-purpose analysis platforms [24]
that represent missing data values with the symbol “NA”.
There, computational procedures typically either return the
value “NA” or abort, generating an error message in re-
sponse to missing data values. In all of these environments,
other options for handling missing data are available but
they must be invoked explicitly.

Numerical codes for missing data—Ilike the zeros seen in the
Pima Indians diabetes dataset—are popular in part because
the use of explicit, non-numeric representations does require
special handling in the analysis software. For example, the
R and S-plus statistical software packages use three-valued
logic [24, p. 19|, based on the conditions “TRUE” (T),
“FALSE” (F), and “missing” (NA). Three-valued logic has
also been used in many database systems to handle miss-
ing data, but this practice has been strongly criticized since
it does introduce significant practical complications (e.g.,
“NOT TRUE” is not equivalent to “FALSE” in three-valued
logic), and it can lead to incorrect results [6, Ch. 18].
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Even within a single data file, multiple codes are commonly
seen for missing data. For example, Little and Rubin note
that in coding survey data separate codes might be used
for different types of non-response (e.g., “don’t know” vs.
“refused to answer” vs. “out of legitimate range”) [17, p.
3]. Another example of special coding for different types of
missing data is provided by vegetation index described on
the following website:

http://islscp2.sesda.com/ISLSCP2_1/html_pages
/groups/veg/fasir_ndvi_monthly_xdeg.html

There, nominal data values are non-negative with negative
values used to indicate three distinct types of missing data:
—99 for measurements made over bodies of water, —88 for
missing vegetation data over land areas, and —77 for mea-
surements made over regions of permanent ice. Multiple
representations for missing data can arise even when there
is only one type of missing data. For example, missing gen-
der values in the AERS database are coded as either “NS”
(not specified), “UNK” (unknown), or “” (blank).

The key point of this discussion is that since there is no
universally accepted way of representing or handling missing
data values, disguised missing data can easily arise when the
person or organization responsible for originally generating
a dataset adopts a specific representation for missing data,
but this representation is not communicated clearly to other
individuals or organizations involved in the analysis of the
dataset. The Pima Indians diabetes dataset provides a clear
illustration of this point: an “obvious” (in retrospect) coding
of missing data appears not to have been recognized by a
number of researchers who analyzed it. The likelihood of
such a breakdown in commnuication increases significantly
as the distance—physical, organizational, or both—between
the collection and the analysis of the data increases. Indeed,
the prevalence of disguised missing data can be expected
to increase as more completely automated procedures are
used to collect and analyze larger and larger datasets. For
example, Myllymaki [20] recently described an XML-based
tool for automatically extracting Web data, noting that:

Managing the heterogeneity of data retrieved from
different Web sites is an integral part of this pro-

cess, as is domain-specific processing of missing

and conflicting data.

This point is revisited briefly in Sec. 4.1.

3. PRACTICAL CONSEQUENCES

The primary effect of disguised missing data is often the in-
troduction of significant biases in our analysis results. The
following subsections provide simple illustrations of this point.

3.1 Influence on simple statistics

An important characteristic of the Pima Indians diabetes
dataset is that all of the missing values are encoded with the
same anomalous value, a situation that occurs frequently in
practice. This situation corresponds to point contamination,
which causes the sample mean to shift toward the anomalous
value (here, zero) and which can cause the sample standard
deviation to either increase or decrease [21, p. 72]. This
point is illustrated in Table 2, which gives, for each of the
eight clinical variables in the dataset, the number of zero
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No. Var. No T z* O o
1 NPG 111 3.85 4.49 3.37 3.22
2 PGL 5 120.89 121.69 31.97 30.54
3 DIA 35 69.11 72.41 19.36 12.38
4 TSF 227 20.54 29.15 15.95 10.48
5 INS 374 79.80 155.55 115.24 118.78
6 BMI 11 31.99 32.46 7.88 6.92
7 DPF 0 0.47 0.47 0.33 0.33
8 AGE 0 33.24 33.24 11.67 11.76

Table 2: Zero values and their effects on the eight explana-
tory variables in the Pima Indians diabetes dataset. Here,
Np is the number of zeros in the specified field, Z and 5, are
the mean and standard deviations computed from the raw
data, and * and & are the mean and standard deviation
computed when zeros are treated as missing data.

values Ny, the mean Z computed from the recorded data val-
ues, the mean Z* computed with the zero records removed,
the standard deviation 6, computed from the recorded data
values, and the standard deviation 6 computed with the
zero records removed. Note that since all nonzero values
are strictly positive, and thus always larger than the zeros
used to code the missing data, Z* is larger than Z for every
variable that includes zero values. In contrast, removal of
the zero records causes the standard deviation to increase
for serum insulin concentration (INS) and to decrease for all
other variables. Also, note that the influence of these dis-
guised missing values can be quite pronounced even when
their concentration is fairly low. As a specific example, al-
though only about 5% of the diastolic blood pressure (DIA)
values are coded as zero, this is enough to inflate the stan-
dard deviation by about 50%, from 12.38 to 19.36.

3.2 Influence on hypothesis tests

As a second example, suppose we partition the dataset into
diabetic and nondiabetic patients and ask whether there is
a significant difference in diastolic blood pressure between
these two groups. If we include the zeros, failing to rec-
ognize them as disguised missing data values, we conclude
there is no significant difference: the t-statistic has a value
of t = 1.80 with 766 degrees of freedom, giving a p-value
of 7.2%, not significant at the standard 5% level. Con-
versely, if we omit the 35 records with zero values for di-
astolic blood pressure from this analysis, the t-statistic has
the value t = 4.68 with 731 degrees of freedom, correspond-
ing to an extremely significant p value of less than 10716,
It is worth emphasizing that this difference is caused by the
handling of 5% of the data values, again demonstrating that
the presence of even a small concentration of disguised miss-
ing data values can have serious consequences.

3.3 Correlations and regression models

The product-moment correlation coefficient:

Sl (@k — 3)(yk — 7)
S (@ —2)2 0 (e — 9)?

ﬁxy = 1/2° (1)

Page 86



SIGKDD Explorations

o
8 o WIO Zeros
x
o]
°
£
@
4 s
=
>
)
<1
a
o -
51
B2
8 B
& & Correlations:
With Zeros: 0.393
WIO Zeros: 0.632
o o o

T T T T T T
0 20 40 60 80 100

Recorded Skin Fold Thickness

Figure 2: Relationship between two obesity measures: body
mass index (BMI) and triceps skinfold thickness (TSF).
Note the prominent grouping of zero values for TSF at the
left end of the plot. The dashed line represents the least
squares regression line fit to the original dataset and the
solid line represents the corrersponding fit to the dataset
with zero values of TSF removed.

is widely used in quantifying the association between vari-
ables, it is intimately related to regression modeling, and it
forms the basis for a useful dissimilarity measure in clus-
ter analysis. Unfortunately, as the following example illus-
trates, disguised missing data can seriously distort correla-
tion estimates. Fig. 2 plots the recorded body mass index
(BMI) against the recorded triceps skinfold thickness (TSF)
for the 768 patients in the Pima Indians diabetes dataset.
Since both variables are obesity measures, we expect them
to be positively associated, exhibiting a positive correlation
coefficient. The correlation coefficient computed from the
recorded data values is 0.393, suggestive of a weak positive
association, but removing the records with zero TSF values
yields a substantially larger correlation coefficient of 0.632.
Fig. 2 also presents two regression lines, each fit by the
method of ordinary least squares to the BMI/TSF variable
pairs. The dashed line was fit to the complete dataset and
the solid line was fit to the dataset with the TSF zeros re-
moved. Since the slopes of these lines are simply the cor-
relation coefficients discussed above, these results represent
another way of viewing the influence of disguised missing
data on the correlation results. In particular, note that the
dashed line, obtained from the unmodified dataset, has the
smaller slope and does not reflect the tendency for large BMI
values to be associated with large TSF values as well as the
solid line with the larger slope does.

3.4 Influence on classification trees

To provide an explicit multivariable example, consider the
problem of constructing a classification tree to predict the
diabetic status of the patients in the Pima Indians dataset
from the eight explanatory variables listed in Table 1. Fig.
3 shows results obtained under three different treatments of
the zeros appearing in the dataset. The left-most tree was
constructed from the unmodified dataset, without recogniz-
ing the zeros as missing data values. Specifically, this tree
was generated using the classification tree procedure tree()
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Figure 3: DBest classification trees obtained by cross-
validation for the Pima Indians diabetes dataset, comparing
three different treatments of zeros in the data.

available in S-plus; first, a large tree was built from the com-
plete dataset, after which an optimal pruning was obtained
by cross-validation, using procedure cv.tree(). The result,
shown in Fig. 3, has five splits (three on BMI, one on PGL
and one on AGE) and six leaves, labelled with the probabil-
ities of being or not being diagnosed diabetic.

The right-most tree in Fig. 3 was constructed analogously,
but first replacing the zeros with the S-plus missing data
designation “NA” and specifying the option na.action =
na.exclude in procedure tree(). This corresponds to the
complete case analysis described in Sec. 1.3 and the re-
sult shown in Fig. 3 again has five splits, but on differ-
ent variables (two on PGL, two on AGE, and one on INS),
and six leaves, labelled as before. The S-plus procedure
tree() also provides another option for handling missing
data (na.action = na.tree.replace.all), which converts
all incomplete variables into factor (i.e., categorical) data
types, with missing values all assigned to a special “miss-
ing” category. For convenience, this approach will be called
the “factor method” in subsequent discussions. The results
of this analysis are shown in the central tree in Fig. 3, which
has four splits (two on PGL, one on BMI, and one on AGE)
and five leaves. Note that as a consequence of the way miss-
ing values are handled, the split conditions are not simply
decision thresholds, but are defined by ranges of values; for
example, the top split is based on whether PGL lies in the
interval from 141 through 199 in this tree, while it is the sim-
pler threshold condition PGL < 127.5 in both of the other
classification trees.

It is well known that classification trees are sensitive to small
changes in the dataset from which they are built, motivating
the widespread use of bagging [4; 5]. There, a large num-
ber of trees are built from bootstrap samples drawn from
the original dataset (i.e., samples of the same size as the
original dataset, drawn with replacement) and the resulting
classifications are effectively averaged using a majority vot-
ing scheme. To see the influence of the three missing data
treatments on this result, it is instructive to examine key
characteristics of the individual trees built from these boot-
strap samples. Fig. 4 shows histograms of the best tree sizes
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Figure 4: Histograms of the best cross-validation tree sizes,
for 100 bootstrap samples of the Pima Indians diabetes
dataset, comparing three different treatments of zeros.

determined by cross-validation from 100 bootstrap samples
drawn from the Pima Indians diabetes dataset. The differ-
ences between the results obtained from the raw data and
those obtained by the factor method are relatively minor, al-
though the factor method does lead to slightly smaller trees,
on average (i.e., median tree size of 8.5 vs. 9). In contrast,
the results obtained by omitting incomplete records give a
significantly smaller median tree size of 6 and a generally
narrower distribution of tree sizes.

The histograms shown in Fig. 5 illustrate that the dif-
ferences in variables defining the splits in the three trees
shown in Fig. 3 are representative. In particular, the top
three histograms in Fig. 5 show that serum insulin concen-
tration (INS) rarely appears in trees constructed from the
unmodified dataset, it appears slightly more often in trees
built using the factor method, and it appears much more
frequently in trees built using complete case analysis. In
contrast, the bottom three plots show exactly the opposite
trend for body mass index (BMI), which is most likely to be
included in trees constructed from the unmodified dataset
and least likely to be included in trees constructed using
complete case analysis.

3.5 Ignorable or non-ignorable?

In dealing with missing data, it is often assumed that the
missing values are distributed randomly through the dataset.
This assumption corresponds to the missing completely at
random (MCAR) missing data model [17, p. 12] and it
is the simplest case to deal with, representing a “best be-
haved” missing data scenario. Unfortunately, this assump-
tion frequently fails in practice as the probability that an
observation is missing commonly depends either on other
observed data values, giving rise to the less restrictive miss-
ing at random (MAR) missing data model, or on the missing
data values themselves, leading to the not missing at ran-
dom (NMAR) missing data model [17, p. 12]. An example
of this last case is the reported income data considered by
Mistiaen and Ravallion [19] discussed in Sec. 1.2.

An important practical issue in dealing with missing data
that occurs systematically rather than randomly is that sim-
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Figure 5: Histograms of the numbers of splilts on the vari-
ables INS (serum insulin, top row) and BMI (body mass
index, bottom row) observed in the best classification trees
constructed from 100 bootstrap samples from the Pima In-
dians diabetes dataset.

ple omission of the missing data values can then lead to
significant biases in our analysis results. This situation is
the most difficult to handle in practice since it depends fun-
damentally on unobservable quantities [17, p. 22], but it
is sometimes possible to gain useful insights into important
differences between the cases with complete data records
and those with incomplete data records. This point is il-
lustrated in Fig. 6, which shows nonparametric probability
density estimates for patient age—a variable which appears
to have no missing values—for two subsets of the population:
those with recorded serum insulin values of zero, and those
with physically reasonable serum insulin values. Note that
while both age distributions exhibit a main peak at ~ 20
years, the patients with non-missing insulin values exhibit a
secondary peak at ~ 40 years and a generally more slowly
decaying tail. The key point is that the age distribution ap-
pears to be different between the two groups: patients with
missing serum insulin values appear generally younger than
those without missing values. Depending on the analysis un-
dertaken, this difference in patient ages could be important,
raising the possibility of nonignorable missing data as in the
income data considered by Mistiaen and Ravallion [19].

4. UNMASKING THE DISGUISE

Given that disguised missing data occurs in real datasets
and can be responsible for significant biases in our analysis
results, the obvious question is how we can detect it. If it
is sufficiently well disguised (e.g., as in cases of very care-
ful fraud), detection of disguised missing data may not be
possible, but in more common cases like the Pima Indians
diabetes dataset, several potentially useful detection mech-
anisms exist. The basic idea is to look for unusual values or
patterns in the dataset, and the following subsections briefly
describe several specific implementations of this strategy.

4.1 Suspicious values

Breualt’s detection of the disguised missing data present
in the Pima Indians dataset was based on domain-specific
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Figure 6: Differences in estimated age distributions between
Pima Indian diabetes records with missing insulin data val-
ues and those with non-missing insulin data values.

knowledge (he is an MD) and a preliminary examination of
the ranges of the data values. While such domain-specific
validations can in principle be included in highly automated
data collection or analysis systems, often they are not be-
cause the developers are not domain experts. Myllymaki
terms these validations “semantic checks,” notes they are
“domain-specific but very powerful,” and describes an ex-
ample for stock market data, noting that stock prices seldom
exceed $ 1000 per share [20].

Conversely, even very limited partial domain knowledge can
sometimes be extremely useful in uncovering disguised miss-
ing data. That is, even if we do not have precise upper
or lower bounds on data variables like blood pressures or
stock prices, the knowledge that they are necessarily posi-
tive means that zero or negative values are infeasible and can
be identified as anomalies, possibly encoding missing data.

4.2 Detectable outliers
An outlier may be defined [2, p. 4] as:

an entry in a dataset that is anomalous with re-
spect to the behavior seen in the majority of the
other entries in the dataset.

If the values selected to encode missing data are sufficiently
far outside the range of the nominal data to appear as out-
liers, we can apply standard outlier detection procedures to
look for disguised missing data. Conversely, it is important
to note three points. First, not all disguised missing data
values will necessarily be detected as outliers. In fact, this
situation holds for the Pima Indians diabetes dataset: while
space limitations do not permit a detailed discussion of the
results here, the zero values in this dataset are generally
not extreme enough relative to the valid data values to be
detectable as outliers. Second, even if these values are all de-
tected as outliers, additional outliers may also be detected,
requiring us to examine the results further to find the dis-
guised missing values. Finally, it is important to note that
a variety of procedures for univariate outlier detection exist
and they generally find different sets of outliers in the same
dataset [21, Ch. 3].
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Figure 7: Plot of recorded skin fold thickness (TSF) values
from the Pima Indians diabetes database. Although the
zero values are visually suspicious in this plot, they cannot
be detected using automated outlier detection algorithms.

4.3 Other distributional anomalies

In the univariate case, outliers correspond to unusually ex-
treme data values, representing one particular type of data
anomaly. A different type of anomaly is the unusually fre-
quent occurrance of a single value that is not extreme enough
to be considered an outlier. This is precisely the situation
for the triceps skin fold thickness (TSF) values included in
the Pima Indians diabetes dataset, shown in Fig. 7. While
the zero values in this data sequence are not detectable as
outliers by standard methods, their unusual frequency is re-
sponsible for the band seen at the bottom of the plot.

A graphical tool that can be extremely useful in detecting
distributional anomalies of this type is the quantile-quantile
(Q-Q) plot commonly used to informally assess the approx-
imate normality of a data sequence {zx} [21, Sec. 6.6.1].
To construct this plot, the data sequence {zy} is first rank-
ordered to obtain the sequence {z(;} where

. S I(N). (2)

A normal Q-Q plot is constructed by plotting z(;) against
the corresponding normal quantile

1 (i-1/3

w=o (320, 3)
where ®(-) is the Gaussian cumulative distribution function
(CDF). If the distribution of the data sequence {xx} is ap-
proximately normal, the plot of x(;) vs. ¢; approximates a
straight line. Replacing the normal CDF with that for a
different distribution provides the basis for assessing other
distributional assumptions, but the key point here is that
the general form of any Q-Q plot tends to highlight repeated
value distributional anomalies like those frequently associ-
ated with disguised missing data.
Fig. 8 shows the normal Q-Q plot constructed from the
recorded triceps skinfold thickness (TSF) data values in the
Pima Indians diabetes dataset. This plot has three domi-
nant features: the flat lower left portion of the plot repre-
sents the zeros in the data, the curved middle portion de-
scribes the variation seen in the nominal data values, and

T1) S T(z) <
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Figure 8: Normal Q-Q plot for the triceps skinfold thickness
data. The flat lower tail in this plot gives a strong indication
that something is unusual in this data sample.

the single point in the upper right corner of the plot repre-
sents an isolated outlier that may be seen clearly in Fig. 7.
The first of these features—the pronounced horizontal lower
tail—provides clear evidence of the distributional anomaly
caused by the repeated zero values in the dataset.

In fact, this anomalous lower tail behavior is an extremely
useful indicator of the presence—or at least the possibility—
of disguised missing data in all of the clinical variables in-
cluded in the Pima Indians diabetes dataset. This point is
illustrated in Fig. 9, which shows the resulting Q-Q plots
for four of these eight clinical variables. The upper left plot
shows the normal Q-Q plot for the diastolic blood pressure
values shown in Fig. 1. As with the plot in Fig. 8 for the
triceps skinfold thickness, the flat lower tail in this plot cor-
responds to the repeated zeros in the dataset, leading us to
immediately focus on these disguised missing data values.
The same observation holds for the serum insulin concen-
tration (INS) Q-Q plot shown in the upper right in Fig. 9;
the primary difference is the greater width of this lower tail,
reflecting the much greater number of zero values in the INS
data sample. The lower left Q-Q plot is that for the diabetes
pedigree function, which has no recorded values of zero and
which therefore lacks the flat lower tail seen in the upper
two plots. Finally, the lower right plot is the normal Q-Q
plot for the number of times pregnant (NPG), which is a
difficult case since, while this data record does contain a
significant number of zeros, this value is plausible for NPG.
Also, since NPG assumes only integer values, every portion
of this Q-Q plot is flat, indicating repeated occurrances of
these integer values. Hence, the flatness of the lower tail is
not indicative of a data anomaly for this variable, but the
width of this tail does raise the question of whether the zero
value is over-represented for NPG. Without knowing how
this variable should be distributed, we cannot say whether
this is the case or not, but the shape of the Q-Q plot does
lead us to raise the question.

4.4 |Inliers: a more difficult case

The problem of outliers in data is well-known and widely
discussed in the literature [2; 21]. Less well-known is the
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Figure 9: Normal Q-Q plots constructed from four of the
Pima Indians diabetes variables: DIA (upper left), INS (up-
per right), DPF (lower left), and NPG (lower right).

problem of inliers, defined as data values that lie in the
interior of the statistical distribution (of the nominal data
values) but which are nevertheless in error [7]. As a specific
example, if zeros were used to encode missing NPG values,
they would represent inliers because zero is a valid data value
for this variable. As DesJardins notes [7], “because inliers
are difficult to distinguish from good data values they are
sometimes difficult to find and correct.”

Another example is the following one, based on the Event
Date field appearing in the first quarter, 2002 AERS de-
mographic dataset. While this data field contains approxi-
mately 22.9% explicitly coded missing data, it also appears
to exhibit disguised missing data coded as inliers. Strong ev-
idence for this comes from analysis of latency values, defined
here as the time in months between the year and month in-
cluded in Event Date (for records where Event Date is not
explicitly missing) and the year and month of the end of
the AERS data quarter. Motivation for analyzing latency
data comes from a desire to understand the reporting dy-
namics of the AERS system. Our expectation is that the
distribution of these latency values should exhibit a single
peak at the average time required to recognize, document,
and report an adverse event through the system. Fig. 10
shows a plot of the estimated latency distribution for the
first quarter 2002 AERS data, defined as the fraction of the
total records exhibiting each possible latency value between
0 months and 120 months (10 years). Overall, the general
behavior is precisely what we expect: on average, it appears
to take about two months from the time the adverse event is
experienced to the time it appears in the AERS release, but
any latency value between zero and six months is common.
The unexpected features seen in Fig. 10 are the narrow sec-
ondary peaks, each spaced 12 months apart and extending
back several years.

Ultimately, it was determined that these secondary peaks
correspond to records with Event Date reported as “January
1.” Specifically, removing all data records with Event Date
of “January 1, 2001” causes the extra peak at a latency
value of 15 months to disappear. Further, this removal has
minimal impact on the main peak of the latency distribution
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Figure 10: Fraction of data records with specified month-
level latency values, from L = 0 to L = 120 (10 years), com-
puted from first quarter 2002 AERS data. The dashed line
represents the results computed from the complete dataset,
while the solid line represents the results obtained after re-
moving all records with an Event Date of “January 1.”

and has no impact on any of the other secondary peaks.
Similarly, removal of all records with Event Date of “January
1, 2000” causes the peak at a latency value of 27 months to
disappear, and analogous behavior is observed for the other,
smaller secondary peaks as “January 1” dates from earlier
years are removed from the dataset. This behavior suggests
that the data anomaly is associated with the recorded Event
Date “January 1,” in any given year.

Further support for this view is provided in Fig. 11, which
plots the fraction of recorded event dates as a function of the
day for the months January, February, March, and April.
In the absence of any association between day of the month
and adverse event, we expect an approximately uniform dis-
tribution of day values, indicated by the horizontal dashed
lines in Fig. 11. It is clear that most of the observed results
conform reasonably well to this expectation, ezcept for the
first day of each month, which always appears much more
frequently than expected, but especially for January.
Overall, these results strongly suggest that “January 1”7 is
commonly used as a surrogate for “date unknown” in en-
tering Event Date data into the AERS system. These re-
sults also suggest that the first day of other months is used
this way, but less frequently than “January 1.” It is possi-
ble that, excluding January, the first of the month is used
as a surrogate for a known month but an unknown day
(e.g., “April 1”7 for “sometime in April”), corresponding to
the phenomenon of heaping [9; 10]. In contrast to missing
data values, which may be regarded as completely unknown,
heaped data values may be regarded as coarsely quantized
and thus imprecise but partially known, similar to censored
data encountered in survival analysis, where lower bounds
on survival times are known for patients who were still alive
at the end of a study. All of these forms of imprecision may
be regarded as special cases of coarsened data [9; 10], which
refers to data values that have been imprecisely observed to
varying degrees by a variety of mechanisms.
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Figure 11: Fraction of Event Date day values observed in
the first quarter 2002 AERS data for the months January,
February, March, and April. The dashed lines indicate the
expected frequency for uniformly distributed reporting days.

5. SUMMARY

As defined in Sec. 2, the problem of disguised missing data
arises when it is not possible to unambiguously infer the
status (i.e., presence or absence) of all data observations
from their recorded values and any available metadata (i.e.,
the recorded data matrix X and the metadata X are not
sufficient to determine the missingness matrix M). In prac-
tice, this problem most commonly arises from a breakdown
in communication between those collecting the data and the
often very different people who analyze it. A simple example
is the Pima Indians diabetes dataset from the UCI machine
learning archive, where missing values for certain clinical
variables (e.g., diastolic blood pressure) have been encoded
as zeros. As tools like that described by Myllymaki [20]
become more widely available to support automated Web-
based generation of large datasets from arbitrary sources, we
can expect the problem of disguised missing data to occur
with increasing frequency.

An important practical consequence of disguised missing
data is that it can seriously distort otherwise reasonable
analysis results, as the examples discussed in Sec. 3 demon-
strate. In particular, the fact that the coded missing data
values are not correct can cause severe biases in many dif-
ferent types of analysis results, even if only a small fraction
of the data records code missing data. For example, it was
shown in Sec. 3.2 that the 5% disguised missing data in
the Pima Indians diabetes diastolic blood pressure record is
enough to reverse the results of a test of the hypothesis that
diabetic and nondiabetic patients differ in diastolic blood
pressure.

If disguised missing data observations can be recognized as
such, a variety of partial remedies are available as discussed
in Sec. 1.3, including deletion strategies, single or multiple
imputation strategies, or more complex iterative approaches
like the Expectation Maximization (EM) algorithm. The
keys to detecting disguised missing data in a dataset are
first, to be aware of its possible existence and second, to ac-
tively look for it in the available data. As noted in Sec. 4,
the basic strategy is to look for unusual values or patterns in
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the dataset. Specific techniques include comparing the data
values with known “reasonableness limits,” either on the ba-
sis of detailed domain-specific knowledge (e.g., Myllymaki’s
$1000 upper limit for stock prices [20]) or on the basis of par-
tial knowledge (e.g., that variables are necessarily positive),
the use of automated outlier detection procedures followed
by careful analysis of the anomalous data observations de-
tected, or the use of other characterization methods like the
quantile-quantile plots discussed in Sec. 4.3.

In more subtle cases, like those involving inliers, the detec-
tion of disguised missing data may require the use of more
application-specific analyses where the expected outcome is
known in advance. This point is illustrated in Sec. 4.4,
where an analysis of AERS Event Date latency data mostly
gave the expected result (i.e., a large main peak in the distri-
bution of latency values) but also showed unexpected aux-
illiary peaks. Subsequent investigation revealed that these
peaks were due to the use of the date “January 1” as a surro-
gate for “date unknown.” The key objective of this example
was to illustrate three points: first, that inlying disguised
missing data values sometimes can be detected; second, that
the key to this detection lies in performing simple analyses
where the general form of the expected result is known at
the outset; and third, that even when we can detect strong
evidence for disguised missing data, we may not be able to
tell which specific records exhibit this problem (e.g., which
“January 1”7 entries are legitimate).

Finally, it is important to recognize that there may be cases
where we cannot be certain whether disguised missing data
is present or not, as in the case of the variable NPG (num-
ber of times pregnant) in the Pima Indians diabetes dataset.
There, since the zero value used to code missing observa-
tions in other variables in this dataset is plausible for NPG
but possibly over-represented, we cannot say with certainty
whether it is used to code missing NPG data or not.
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