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ABSTRACT 

This paper outlines and implements a concept for developing 
alternative tools for toxicity modeling and prediction of 
chemical compounds to be used for evaluation and 
authorization purposes of public regulatory bodies to help 
minimizing animal tests, costs, and time associated with 
registration and risk assessment processes. Starting from a 
general problem description we address and introduce 
concepts of multileveled self-organization for high-
dimensional modeling, model validation, model combining, 
and decision support within the frame of a knowledge 
discovery from noisy data. 
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1. THE PROBLEM OF ECOTOXICITY 
Besides the economical importance of the chemical industry 
as Europe's third largest manufacturing industry, it is also 
true that certain chemicals have caused serious damage to 
human health resulting in suffering and premature death and 
to the environment. The incidence of some diseases, e.g. 
testicular cancer in young men and allergies, has increased 
significantly over the last decades. While the underlying 
reasons for this have not yet been identified, there is justified 
concern that certain chemicals play a causative role for 
allergies. 

The global production of chemicals has increased from 1 
million tons in 1930 to 400 million tons today. There are 
about 100.000 different substances registered in the European 
market of which 10.000 are marketed in volumes of more 
than 10 tons, and a further 20.000 are marketed at 1-10 tons 
per year. The present system for general industrial chemicals 
distinguishes between "existing substances" i.e. all chemicals 
declared to be on the market in September 1981, and "new 
substances" i.e. those placed on the market since that date. 
There are some 3000 new substances. Testing and assessing 
their risks to human health and the environment according to 
the European Commission Directive 67/548 are required 
before marketing in volumes above 10 kg per year. For 
higher volumes more in-depth testing, focusing on long-term 
and chronic effects, has to be provided [1]. In contrast, 
existing substances amount to more than 99% of the total 
volume of all substances on the market, but they are not 
subject to the same testing requirements. Some of them have 
never been tested at all. The number of existing substances 

reported in 1981 was 100.106, the current number of existing 
substances marketed in volumes above 1 ton is estimated at 
30.000. In result, there is a general lack of knowledge about 
the properties and the uses of existing substances. The risk 
assessment process is slow and resource-intensive and does 
not allow the system to work efficiently and effectively [1]. 
To address these problems and to achieve the overriding goal 
of sustainable development one political objective formulated 
by the European Commission in its “White Paper on the 
Strategy for a future Chemicals Policy” [1] is the 
implementation of the so-called REACH system 
(Registration, Evaluation and Authorization of Chemicals). 
Some more important objectives of the REACH framework 
are the protection of human health and the environment, an 
increased overall registration transparency, integration with 
international efforts, and the promotion of non-animal testing 
methods.   
A consequence of this new chemicals policy, which passed 
European and national parliaments in 2005, is that every 
existing single substance on the market for the last 15 years 
will have to subsequently pass an official risk assessment and 
registration procedure as defined by the REACH framework, 
starting from high volume substances. But also for 
substances in articles (e.g., manufactured goods such as cars, 
textiles, electronic chips) a special regime applies. 

Based on World Bank estimates and a number of prudent 
assumptions, diseases caused by chemicals are assumed to 
account for some 1% of the overall burden of all types of 
disease in the European Union (EU).  Assuming a 10% 
reduction in these diseases as a result of REACH would 
result in a 0.1% reduction in the overall burden of disease in 
the EU. This would be equivalent to around 4.500 deaths 
being avoided every year [2]. Due to lack of data it is not 
possible to get a quantitative idea of the impacts on the 
environment. All in all, however, it is expected that REACH 
will contribute to reduced pollution of air, water, and soil as 
well as to reduced pressure on biodiversity and to reduced 
effects from endocrine disrupting chemicals [2]. 

According to a study of the University of Leicester, UK, one 
cost for implementing REACH would be an additional need 
of about 12 million animals for testing purposes. Because of 
this costs and the very long time it would take to run animal 
tests for all chemicals to be assessed (> 30.000), alternative, 
standardized, validated and accepted, by both industry and 
regulatory bodies, non-animal test methods are required. 
Current estimates expect that such alternative methods would 
save the lives of at least 2 million animals [3]. 
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A current and promising way in that direction is building 
mathematical models – QSARs, Quantitative Structure-
Activity Relationship models - based on already existing 
animal test data that describe and predict the impact of a 
given dose or concentration of a chemical compound 
(pollutant) on the health of a population of a certain 
biological species by the chemical’s molecular properties. 
Typical parameters that are used in QSAR for expressing the 
chemical’s impact on the population’s health are the lethal 
dose LD50 or the lethal concentration LC50. LC50, for 
example, specifies the experienced concentration of a 
chemical compound where 50% of the population died within 
a given time, for example within a period of 96 hours 
(LC50/96h), after introduction of the chemical into the system. 
The issue of modeling and prediction of ecotoxicity of a very 
specific type of chemicals - pesticides – was considered in 
the international project DEMETRA [4] funded by the 
European Commission. To satisfy the multi-disciplinary 
nature of modeling ecotoxicity this project is composed of 
chemists, toxicologists, information scientists, and engineers 
from science and industry: 

• Istituto di Ricerche Farmacologiche “Mario Negri”, 
Italy, 

• Central Science Laboratory, UK, 
• Biochemics Consulting, France, 
• University of Galati, Romania, 
• Politecnico di Milano, Italy, 
• University of Patras, Greece, 
• Syngenta Crop Protection AG, Swizerland, 
• BASF AG, Germany, 
• KnowledgeMiner Software, Germany. 

The major objective of this project was to develop a public 
piece of software for toxicity prediction of pesticides and 
related compounds (such as metabolites), directly and 
immediately useful for evaluation of pesticides and related 
compounds within the dossier preparation for pesticide 
registration. This software aims specifically at users such as 
national and EU regulatory bodies, industries, non-
governmental organizations, and researchers who are 
involved in official registration and authorization procedures. 
It will allow processing of chemicals, one by one, for 
prediction of toxicity for pesticides and related compounds. It 
will also support regulatory evaluators to assess data 
submitted in approvals applications. 
Compared to the general target of the REACH system of 
assessing and predicting toxicity of industrial chemicals, as 
outlined above, the target of DEMETRA was more focused 
on pesticides, and thus is somehow more difficult, because 
pesticides are typically very active compounds, complex on a 
chemical point of view (many functional groups are present, 
often several of them within the same compound) and on a 
toxicological point of view (for the occurrence of many toxic 
mode of action caused by the compounds). Furthermore, 
pesticides are limited, and the number of data available is 
small. 

2. THE PROBLEM OF MODELING 
ECOTOXICITY 
Besides the ethical, cost, and time considerations of running 
traditional bioassays to evaluate the ecotoxic effects of a 
chemical, there are also methodological problems of building 
predictive QSAR models. Ecotoxicological systems are 
complex, ill-defined systems, which are characterized by [5]: 

• Inadequate a priori information about the system. 
Creating models for predicting toxic or other negative 
effects on the environment and human health is a highly 
interdisciplinary challenge. Scientists from chemistry, 
toxicology, biology, systems theory, information 
technology and machine learning, but also, not to forget, 
users from industry and public, regulatory bodies have to 
work together for finding a real working solution. There is 
no domain knowledge available, from any single domain, 
that would suffice to solve the problem by theory-driven 
approaches. 

• Large number of potential, often immeasurable or 
simply unknown variables. A few hundred to a few 
thousand input variables are not uncommon in toxicity 
QSAR modeling. 

• Noisy and few data samples. Reliable experimental 
toxicity data derived from past bioassays are rather rarely 
available and to obtain. Some tens to a few hundred data 
samples are common in toxicity QSAR modeling, though. 

• Fuzzy objects. Experimental toxicity data are result of 
animal tests. Depending on the species used in an assay its 
inherent bio-variability can be quite high and can vary very 
much from species to species. 

The economical, ethical, and methodological problems 
resulting from applying traditional bioassay and theory based 
methods but also dedicated expert systems [6] suggest and 
demand using a data–driven approach for finding an 
alternative tool for the evaluation and authorization of the 
huge amount of chemicals on the market. 

Concluding from a systems theoretical analysis of the 
toxicity QSAR modeling problem [7, 8] the final, simplified 
nonlinear static model used in QSAR modeling to describe 
acute toxicity is shown in figure 1: 

      software
       system

zT

sv dv
mapping

zM

LC 50

  
Figure 1. Simplified model for describing acute toxicity 

with  
LC50 = f2(f1(sv, zT), zM) = f(sv, zT, zM), and 

LC50 – experienced lethal concentration for a certain 
species and chemical compound (taken from past animal 
tests), 
sv – the (graphical) structure of the tested chemical 
compound in the chemical domain, 
zT – noise of the chemical structure to molecular 
descriptor transformation process, 
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zM – noise transformed from the ecotoxicological test 
system, 
dv – vector of numerical molecular descriptors of the test 
compound to be used as input information for QSAR 
modeling. 
 

The external disturbance zT which adds noise to descriptor 
input space used for modeling can be reduced by fixing bugs 
and manual failures and by finding a most consistent 
chemical structure-to-descriptor transformation – although it 
is not clear a priori which transformation or optimization will 
add and which will reduce noise. The disturbance zM, which 
finally results from the experimental animal tests, in contrast, 
adds noise to the output LC50 and is a given fact that cannot 
be changed afterwards. The overall noise dispersion in the 
data used for building toxicity QSAR models is expected of 
being up to 400%. 
Apparently, inductive modeling of ecotoxicological systems 
implies dealing with very noisy data. Sets of data, generally, 
are not perfect reflections of the world. The measuring 
process necessarily captures uncertainty, distortion and noise. 
Noise is not errors that can infect data but is part of the 
world. Therefore, a modeling tool, but also results and 
decisions, must deal with the noise in the data. For a small 
level of noise dispersion, all regression-based methods using 
some internal criterion can be applied: Self-organizing 
Statistical Learning Networks (also known as Group Method 
of Data Handling; GMDH [5, 9, 10]) with internal selection 
criteria, statistical methods, or Neural Networks. For 
considerably noisy data – which always includes small data 
samples – GMDH or other algorithms based on external 
criteria are preferable. For a high level of noise dispersion, 
i.e., processes that show a highly random or chaotic behavior, 
finally, nonparametric algorithms of clustering, Analog 
Complexing pattern recognition, graphic-based methods, or 
fuzzy modeling should be applied [5, 11] to satisfy Stafford 
Beer’s adequateness law [12]. This implies, of course, that 
with increasing noise in the data the model results and their 
descriptive language become fuzzier and more qualitative 
too.  

In practice, inductive modeling means handling mountains of 
data, i.e. tables with high dimension. Besides the known  

theoretical dimensionality problem there is also a dimension 
limit of all known tools regarding computing time and 
physical memory. Therefore, a step of high priority is the 
objective choice of essential variables - state space reduction. 
In many fields, such as toxicology, there are only a small 
number of observations but many observed or calculated 
variables, which is the reason for uncertain results. 

Furthermore, there is only very limited domain knowledge 
that could be used for modeling purposes so it calls for tools 
that perform a highly automated knowledge extraction from 
data. 

3. KNOWLEDGE EXTRACTION FROM 
DATA 
Deriving knowledge from data is an interactive and iterative 
workflow process of various subtasks and decisions and is 
called Knowledge Discovery from Databases (KDD) [13]. 
Usually, the single data mining process, only, has been 
automated in form of algorithms (Neural Networks, Decision 
Trees, fuzzy modeling, Genetic Algorithms, classical 
statistical methods, for instance) and software. The remaining 
parts require user interaction, manual work, and they are 
overall most time-consuming. This means, the result of 
knowledge discovery is very much dependent from 
knowledge, skills, ideas of the person who is running the 
analysis, and it is barely transparent and reproducible by 
other persons. Seen from a user perspective, however, in 
many cases these are key features for generating acceptance, 
trust and reliability in the results. So it is in the case of 
toxicity QSAR modeling. 

We have been developing an integrating algorithm based on 
multileveled self-organization. This technology has been 
used intensively in the DEMETRA project for the first time. 
Our approach to a multileveled self-organization was 
motivated by the initial idea of KDD by making the overall 
workflow process more automated and more objective and to 
limit the user involvement to the inclusion of well-known a 
priori knowledge and to some pre- and post-processing tasks 
that are hardly to automate. Figure 2 shows the KDD 
workflow process when implementing an automated 
multileveled self-organization. 

Knowledge

Data

Preprocessing
interactive

Selection

subdata

preprocessed
data

Evaluation
interactive

final
model(s)

1. & 2. Level of Self-organization

Preprocessing
automated

Evaluation
Selection
second level

selected
models

preprocessed
data

Transformation
Active Neuron

Evaluation/Selection
Active Neuron

model
candidates

transformed
data

Data Mining
Active Neuron

3. Level of Self-organization

 
Figure 2. Multileveled self-organization displayed in gray boxes as a tool for KDD workflow processing 
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The concept of a multileveled self-organization starts with 
data preprocessing tasks that can be automated and may 
include: 
• Missing values detection and handling, 

• Further pre-selection of input variables according to 
some a priori given or intended constraints like a variable’s 
diversity, type (continuous or discrete), or origin, 

• Generation of additional, derived potential input 
variables, 

• Deterministic or stochastic subdivision of data sets, 
• Dimension reduction in state and/or sample space. In 

our work we introduced and used a wrapper approach, 
where the selection of relevant variables is evaluated by the 
implemented data mining algorithm directly, i.e., by the 
quality of results or the appropriateness of a variable to 
contribute to solving the given modeling task. In this case, 
variable selection is based on the so far reached model 
quality in the data mining process, i.e., we have an iterative 
procedure. The basic idea here is dividing high-
dimensional modeling problems into smaller, more 
manageable problems by creating a new self-organizing 
network level composed of active neurons, where an active 
neuron is represented by an inductive learning algorithm in 
turn (lower levels of self-organization) applied to 
disjunctive data sets. The objective of this approach is 
based on the principle of regularization of ill-posed tasks, 
especially on the requirement of defining the actual task of 
modeling a priori to allow the algorithm selecting a set of 
correspondingly best models. In the context of a knowledge 
discovery from databases, however, this idea consequently 
requires using this principle in every stage of the 
knowledge extraction process – data pre-selection, pre-
processing including dimension reduction, modeling (data 
mining), and model evaluation – consistently.  

The proposed approach of multileveled self-organization 
integrates pre-processing, modeling, and model evaluation 
into a single, automatically running process and it therefore 
allows for directly building reliable models from high-
dimensional data sets (up to 30.000 variables, currently), 
objectively. The external information necessary to run the 
new level of self-organization is provided by the 
implemented algorithm’s noise sensitivity characteristic as 
explained in [14, 15] (fig. 3). 

The first two levels of self-organization have been the basic 
idea of Self-organizing Statistical Learning Networks for 
more than 20 years [5, 9, 17]. They are built on three main 
concepts: 

• The black-box method as a basic approach to analyze 
systems from input-output data, 

• The concept of connectionism as a description of 
complex functions by networks of elementary functions, 
and 

• The principle of model induction [5]. 

These two levels of self-organization incorporate these 
essential tasks: 

• Self-organization of neuron transfer functions, 

• Self-organization of the network’s structure (topology) 
by generating alternative model candidates of different 
input variables and of growing complexity, and 

• The first level of model evaluation and model selection. 
The last step in multileveled self-organization is further 
evaluation and selection of models that passed the lower self-
organization levels by calculating the models’ Descriptive 
Power as described in more detail in [7, 14, 15, 16]. A key 
problem in data mining and knowledge discovery from data 
is final evaluation of generated models. This evaluation 
process is an important condition for application of models 
obtained by data mining. From data mining, only, it is 
impossible to decide whether the estimated model can reflect 
the causal relationship between input and output, adequately, 
or if it's just a stochastic model with non-causal correlations. 
Model evaluation needs - in addition to a properly working 
noise filtering for avoiding overfitting the learning data (first 
level of validation) - some new, external information to 
justify a model's quality, i.e., both its predictive and 
descriptive power. Again, the algorithm’s noise sensitivity 
characteristic provides key information here. 
The objective of a second level of model validation is: 

• Noise filtering implemented in first level of validation is 
very likely to not being an ideal noise filter and thus not 
working properly in any case (see fig. 3) and  

• To get a new model quality measure, Descriptive Power, 
that is adjusted by the noise filtering power of the 
algorithm. 

 
Figure 3. Noise sensitivity characteristic of a Self-

organizing Statistical Learning algorithm 
M: number of potential inputs 

N: number of samples 
Qu: virtual quality of a model 

Qu=1: noise filtering does not work at all 
Qu=0: ideal filtering 
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The noise sensitivity characteristic (fig. 3) expresses a virtual 
model quality Qu that can be obtained when using a data set 
of M potential inputs of N random samples. It is virtual 
model quality, because, by definition, there is not any causal 
relationship between stochastic variables (true model quality 
Q = 0, by definition [14]), but there are actually models of 
quality Q > 0, which, when using random samples, just 
reflect stochastic correlations. By implementing an 
algorithm’s noise sensitivity characteristic into a data mining 
tool it is possible for any given number of potential inputs M 
and number of samples N to calculate a threshold quality 
Qu=f(N, M) that any model's quality Q must exceed to be 
stated valid in that it describes some relevant relationship 
between input and output. Otherwise, a model of quality Q ≤ 
Qu is assumed invalid, since its quality Q can also be reached 
when simply using independent variables, which means that 
this model does not differ from a model of just stochastic 
correlations. The implemented two-stage model validation 
approach now allows, for the first time, to get on the fly an 
active decision support in model evaluation based on the 
model’s descriptive power calculated on the learning data, 
only, for minimizing the risk of false interpreting models and 
using invalid models that just reflect some non-causal 
correlation [14, 15, 16, 18]. 

The overall process of knowledge extraction based on 
multileveled self-organization is highly computationally 
intensive – the self-organization of a nonlinear regression 
model of about 10 self-selected relevant input variables from 
1000 potential inputs and 200 samples, for example, may 
take up to 2 days of computing time – however, since it 
doesn’t require any user interaction it can run in the 
background while saving the user’s attention and time for 
other work. Increased transparency and reproducibility are 
other features of this approach. 

4. RESULTS 
The results shown here were obtained within the DEMETRA 
project and they can be seen as milestones towards QSAR 
models that can be applied within REACH system 
implementation. 
Based on five data sets - D1 (Trout), D2 (Daphnia), D3 (Oral 
Quail), D4 (Dietary Quail), D5 (Bee), - we first created many 
individual regression and classification models (> 500) using 
different modeling and data mining algorithms like Partial 
Least Squares, different types of Neural Networks, fuzzy 
modeling, and multileveled self-organization as described 
above. 

From this pool of individual models we then created a hybrid 
model for each data set by combining corresponding 
individual models. 

Since the focus of public regulatory bodies is on regression 
models, we report results from these models here, only. 

4.1 The Data 
Biological data are affected by factors relative to the 
biological system itself and by factors dependent on the 
investigation technique used. While natural variability cannot 
be eliminated, and is part of the real world, many attempts 
have been done to reduce the influence of the technique used 

to study the biological system, through the introduction of 
standardized procedures. Commonly, the term variability is 
used in relation to the natural factors, while uncertainty is 
used in the case of factors related to the technique to study 
the biological phenomenon. In our case, we used only data on 
pesticide ecotoxicity originating from experiments, which 
have been conducted according to official guidelines. In 
particular, Dr. Brian Montague from the US Environmental 
Protection Agency, Washington, DC, provided the data for 
this work. In many cases several different values for the same 
compound was reported, resulting from different experiments 
conducted all according to the official guidelines. We defined 
some criteria for the selection of appropriate values, in order 
to use experiments with a higher quality and a lower 
variability [19]. Furthermore, we checked the values with 
other databases, in order to increase their reliability. We 
studied five different toxicological endpoints, and the 
number of compounds was less than 300 in the most 
favorable case (toxicity towards rainbow trout) to about 100 
in the case of bee toxicity. The limited number of examples 
is, indeed, a common problem for this type of study, mainly 
– like in our case on pesticides - when a heterogeneous set of 
compounds is used, referring to many different kinds of bio-
mechanisms responsible for the observed toxicity 
phenomenon.  

To describe the chemical nature of the compounds we used 
several software tools, such as DRAGON, CODESSA, 
PALLAS, CACHE (see also fig. 1). As a result, thousands of 
molecular descriptors are available for each chemical 
compound. 

4.2 Individual Models 
Based on the five data sets a large set of individual QSAR 
models were created by different project partners using 
different data mining algorithms. To allow comparison and 
combination of these models three strict preconditions were 
defined: 

• The official data sets produced within the DEMETRA 
project have to be used for modeling, only. 

• Although some of the data sets have rather few 
compounds N, only (N~100), each data set Di was 
randomly subdivided by a 6:1 split into a learning subset 
Di,A (or Di,A and Di,B) and an out-of-sample test data subset 
Di,C, with NA,B + NC = N. The data in the test subset was 
never to be used for modeling at all, but was hold out for 
validating all created individual models on this new data. 

• For comparison purposes, for every model the 
Coefficient of Determination R2 calculated on both learning 
and test data subsets had to be provided: 

! 

R
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= 1"# 2
,# 2
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(yi " ˆ y i )
2
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2
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%
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! 

yi , 

! 

ˆ y i , and 

! 

y  are the true, estimated, and mean 
values of the output variable, respectively.  

The results of the five best individual QSAR models for the 
trout data set are listed in table 1 exemplarily. Some QSAR 
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models were created using 2-dimensional (2D) molecular 
descriptors (inputs), only, others were built on 3-dimensional 
(3D) or 2D and 3D descriptors. 

 
Table 1. Five best models for the data set D1 – Trout - 

with respect to R2A,B,C 

The model type column of table 1 distinguishes between 
implicit and explicit regression models. While Neural 
Networks typically distribute and hide the created model in 
the network the result of multileveled self-organization are 
explicit analytical models. Figure 4 shows, for example, the 
regression equation of the first model of table 1. Neither the 
formal model structure nor the input variables composition 
was given a priori; the model is completely self-organized. 
This true knowledge extraction from data has proven very 
useful and advantageous for model interpretation, evaluation, 
and implementation issues. So it is possible to implement 
these types of models in a MS Excel sheet, automatically, for 
immediate use for further analysis, evaluation, or just 
application purposes [18].     

LC50 (trout) [mmol/l] = - 1.6023 (C-031)-1 - 1.53 
MATS3e - 1.3148 (nOH)-1 - 27.1340 GATS3m - 0.8957 
nxch3 + 2.1469 (SEigZ)-1 - 0.2699 LogDpH7 + 0.7736 
(D/Dr09)-1 - 0.0313 D/Dr03 + 5.8706 (Mp)-1 + 28.220  

Figure 4. Self-organized linear regression model in 
chemical notation 

Similar results of individual models were obtained for the 
other four data sets. 

4.3 Combined Models 
All methods of automatic model selection lead to a single 
"best" model while the accuracy of model result depends on 
the variance of the data. A common way for variance 
reduction is aggregation of similar model results following 
the idea: Generate many versions of the same 
predictor/classifier and combine them in a second step. If 
modeling aims at prediction, it is helpful to use alternative 
models that estimate alternative forecasts. These forecasts 
can be combined using several methods to yield a composite 
forecast of a smaller error variance than any of the models 
have individually. The desire to get a composite forecast is 
motivated by the pragmatic reason of improving decision-
making rather than by the scientific one of seeking better 
explanatory models. Composite forecasts can provide more 
informative inputs for a decision analysis, and therefore, they 
make sense within decision theory, although they are often 
unacceptable as scientific models in their own right, because 
they frequently represent an agglomeration of often conflict 
theories. 

Based on the five sets of individual models that now served 
as input information, we generated a combined model for 
each data set by a Self-organizing Statistical Learning 
Network algorithm. The result is five self-selected, optimally 
composed linear or nonlinear regression models, including 
their regression equation. It is shown from table 2 that the 
overall model performance for all 5 data sets increases 
sufficiently. Figures 5 plots the combined model again for 
the trout data set exemplarily. 
It should be noted that the combined models are not just a 
composition, or the mean, of the five or seven best individual 
models of a data set but are an a priori unknown, optimal mix 
of models that – combined – decrease the error variance of 
the combined model most. 

However, every individual or combined model is not able to 
also reflect the uncertainty given by the initial experimental 
toxicity data. Here the idea of a prediction interval is useful. 

 

Figure 5. Scatter plot of the combined model for data 
set D1 – Trout 

R2
A,B,C Q2

A,B R2
C

m model type DM-method

0.67 0.69 0.59 10
explicit linear 

model

multileveled 

self-

organization

0.66 0.66 0.64 15
explicit linear 

model

multileveled 

self-

organization

0.65 0.66 0.63 6

implicit 

nonlinear 

model

Neural 

Network      

(GA-MLP)

0.63 0.63 0.65 8

implicit 

nonlinear 

model

Neural 

Network      

(GA-MLP)

0.63 0.71 0.64 11

explicit 

nonlinear 

model

multileveled 

self-

organization

with

m - number of variables used in the model

M - number of potential input variables; state space dimension

N = 275   NA,B = 229   NC = 46   M: up to 1800

R2
A,B,C  - R

2 calculated on the entire data set D

Q2
A,B  - leave-one-out cross-validation on the data subset DA,B  

multileveled self-organization: High-dimensional modeling algorithm 

using multileveled self-organization with GMDH Networks as Active 

Neurons

Neural Network (GA-MLP): Genetic Algorithm for dimension 

reduction; Multilayer Percepton Neural Network for modeling

R2
C  - R

2 calculated on the test data subset DC
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Table 2. Model performance summary of five 

combined models  
 

4.4 Model Uncertainty and Prediction 
Interval 
As pointed out in this paper, toxicity data are highly noisy 
and therefore require adequate modeling, results 
interpretation, and decision support methods. Additionally, 
all methods of automatic model selection lead to a single 
“best” model. On this base are made conclusions and 
decisions as if the model was the true model. However, this 
ignores the major component of uncertainty, namely 
uncertainty about the model itself. In toxicity modeling it is 
not possible that a single crisp prediction value can cover and 
reflect the uncertainty given by the initial object’s data. If 
models can be obtained in a comparing short time it is useful 
to create and apply several alternative reliable models on 
different data subsets or using different modeling methods 
and then to span a prediction interval from the models’ 
various predictions for describing the object’s uncertainty 
more appropriately. In this way a most likely, a most 
pessimistic (or most safe prediction from a toxicity point of 
view), and a most optimistic (or least safe) prediction is 
obtained, naturally, based on the already given models only, 
i.e., no additional (statistical) model has to be introduced for 
confidence interval estimation, for example, which would 
had to make some new assumptions about the predicted data, 
and therefore, would include the confidence about that 
assumptions, which, however, is not known a priori. 
A prediction interval has two implications:  

• The decision maker is provided a set or range of 
predicted values that are possible and likely representations 
of a virtual experimental animal test including the 
uncertainty once observed in corresponding past real-world 
animal tests. The decision maker can base its decision on 
any value of this interval according to importance, 
reliability, safety, impact or effect or other properties of the 
actual decision to make. This keeps the principle of 
freedom of choice for the decision process. 

• Depending on which value is actually used, a prediction 
interval also results in different overall model quality 
values like R2, starting from the highest accuracy for most 
likely predictions. 

Figure 6 displays the prediction intervals for selected test set 
compounds (DC) obtained from the predictions of the 
individual models contained in the combined model for the 
data set D1 as reported in table 2. 

Figure 6. Prediction interval for test set compounds of 
data set D1,C 

 

5. DECISION SUPPORT MODEL 
IMPLEMENTATION 
The data-driven concept for developing adequate toxicity 
prediction and decision models outlined in this paper to be 
used as alternative, substituting tools for animal tests during 
the projected extended evaluation of existing chemical 
compounds is implemented, exemplarily, for the trout data 
set in Microsoft Excel. This prototype is a fully working 
toxicity prediction tool that works on both any single 
compound of the given data set D1 and any new compound 
when the required descriptor values for this compound are 
provided. The result is a most likely toxicity value in two 
common toxicity data spaces – mmol/l and mg/l – along with 
the prediction uncertainty expressed by the compound’s 
predicted highest and lowest toxicity, displayed numerically 
and graphically.  
Figures 7 and 8 show the interface of this tool.  

Some features, which are relevant for the specific purposes of 
this tool, should be noted here. Our approach was driven by 
the overall goal of providing a tool for regulatory use of 
QSAR models. A major problem with currently published 
QSAR models, from a regulatory point of view, is that they 
are much closer to a research tool than to a practical tool.  

data set R2
A,B,C Q2

A,B R2
C

m models

D1 - Trout 0.74 0.77 0.56 7
NN(1), F-NN(1), 

MSO(5)

D2 - Daphnia 0.81 0.84 0.62 7
NN(2), F-NN(2), 

PLS(1), MSO(2)

D3 - Oral Quail 0.84 0.9 0.53 4 NN(3), PLS(1)

D4 - Dietary Quail 0.85 0.88 0.71 7 PLS(1), MSO(6)

D5 - Bee 0.8 0.8 0.78 5 NN(2), MSO(3)

with

models column: 

R2
A,B,C  - R

2 calculated on the entire data set Di

Q2
A,B  - leave-one-out cross-validation on the data subset Di,A,B  

R2
C  - R

2 calculated on the test data subset Di,C

PLS - Partial Least Squares

MSO - Multileveled Self-organization

m - number of models implemented in the combined model

The modeling method a model was generated 

with followed by the number of models of this 

type used in the combined model

NN - Neural Network

F-NN - Fuzzy Neural Network
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Figure 7. Interface of the implemented decision support 
model for predicting a chemical compound’s toxicity on 

the biological endpoint trout – page 1. 

 
Figure 8. Interface of the implemented decision 

support model for predicting a chemical compound’s 
toxicity on the biological endpoint trout – page 2. 

In particular, they are sensitive to the human experience of 
the individual researcher. Typically, a researcher with a 
specific skill is using those more research-oriented models. 
And, it is expected that on the basis of her/his experience 
different results may be obtained. Such a situation, which is 
common in the research field, is neither a most favorable nor 
an acceptable case for regulatory uses during the 
authorization process of chemicals, if different results are 
expected depending on the person who is using the QSAR 
model.  

The tool we present here, vice versa, is tailored for regulatory 
uses, because it calculates a unique output value from the 
model, along with its uncertainty. The user does not require 
any particular experience in the QSAR model itself. 
However, for a given chemical compound, she/he has to 
calculate the values for the chemical descriptors indicated in 
the tool using certain publicly available software, but no 
further experience in QSAR modeling is needed. 

6. SUMMARY 
In this paper we outlined a concept for developing alternative 
tools for toxicity prediction of chemical compounds to be 
used for evaluation and authorization purposes of public 
regulatory bodies to help minimizing animal tests, costs, and 
time associated with registration and risk assessment 
processes. 

Toxicity QSAR modeling is described by these major 
preconditions and requirements: 

• Animal tests as the source of toxicity data for QSAR 
modeling are described by a complex, nonlinear dynamic 
ecotoxicological system. However, the toxicity QSAR 
modeling problem, finally, transforms to building static, 
linear or nonlinear models. This, all together, is a strong 
simplification of the ecotoxicological system and adds high 
uncertainty to results. 

• Toxicity data is very noisy due to a biological species’ 
natural variability and due to the uncertainty of the animal 
test procedure. Also, there is not a single valid toxicity 
value but a certain range of experienced toxicities for a 
given chemical compound that can be seen all as true, 
reliable values. 

• Toxicity QSAR modeling is an ill-defined and high-
dimensional modeling problem that requires adequate 
modeling tools. 

• Decision support has to take into account the uncertainty 
of the underlying system and the models.  

Within the DEMETRA project, we generated five data sets 
for five biological endpoints that show very high quality. 
This quality feature refers to the reliability of the 
experimental toxicity data derived from past animal tests as 
well as to the calculation of molecular descriptors for the 
pesticides under study. 

We addressed the problem of high-dimensional modeling of 
an ill-defined system by introducing multileveled self-
organization, which incorporates state space dimension 
reduction, variables selection, data mining, and model 
evaluation into a single, autonomously running algorithm. 
We paid special attention to model validation and we 
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suggested and implemented a two-stage model validation 
idea, which is composed of applying cross-validation and an 
algorithm’s identified noise sensitivity, subsequently. 

We combined several individual QSAR models to model 
ensembles that all show significantly increased model 
accuracy and, in addition, we assigned to every single 
prediction of a given compound a prediction interval to 
describe uncertainty. 
Finally, this concept is implemented exemplarily in 
Microsoft Excel for real-world application and demonstration 
purposes. All five final models are currently developed in 
Java for public web-based access [4]. 
A future work on the way to reliable toxicity prediction 
models is the definition of standards for toxicity data, 
toxicity QSAR modeling, and model validation for 
improving reproducibility, transparency and acceptability of 
data-driven toxicity prediction tools to be established as a 
real alternative and supplement to animal tests. 
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